Минеральные вещества и их влияние на организм человека

Tekst
Przeczytaj fragment
Oznacz jako przeczytane
Jak czytać książkę po zakupie
Nie masz czasu na czytanie?
Posłuchaj fragmentu
Минеральные вещества и их влияние на организм человека
Минеральные вещества и их влияние на организм человека
− 20%
Otrzymaj 20% rabat na e-booki i audiobooki
Kup zestaw za 42,64  34,11 
Минеральные вещества и их влияние на организм человека
Audio
Минеральные вещества и их влияние на организм человека
Audiobook
Czyta Авточтец ЛитРес
21,32 
Szczegóły
Czcionka:Mniejsze АаWiększe Aa

19. Calcium Fructoborate for Bone and Cardiovascular Health, https://pubmed.ncbi.nlm.nih.gov/26686846/

20. Essentiality of boron for healthy bones and joints, https://pubmed.ncbi.nlm.nih.gov/7889887/

21. Dietary boron, brain function, and cognitive performance, https://pubmed.ncbi.nlm.nih.gov/7889884/

22. Studies of the interaction between boron and calcium, and its modification by magnesium and potassium, in rats. Effects on growth, blood variables, and bone mineral composition, https://pubmed.ncbi.nlm.nih.gov/1283690/

23. The role of boron in nutrition and metabolism, https://pubmed.ncbi.nlm.nih.gov/8140253/

24. Boron Neutron Capture Therapy, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5296588/

25. The importance of boron nutrition for brain and psychological function, https://link.springer.com/article/10.1007/BF02783144

26. Short-term efficacy of calcium fructoborate on subjects with knee discomfort: a comparative, double-blind, placebo-controlled clinical study, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4051624/

27. Dietary boron intake and prostate cancer risk, https://pubmed.ncbi.nlm.nih.gov/15010890/

28. Boron and its compounds: current biological research activities, https://link.springer.com/article/10.1007/s00204-017-2010-1

29. Human environmental and occupational exposures to boric acid: reconciliation with experimental reproductive toxicity data, https://pubmed.ncbi.nlm.nih.gov/22686310/

30. A human health risk assessment of boron (boric acid and borax) in drinking water, https://pubmed.ncbi.nlm.nih.gov/8837846/

31. Clinical manifestations of toxicity in a series of 784 boric acid ingestions, https://pubmed.ncbi.nlm.nih.gov/3370093/

Бром

(Br)


Недавнее открытие позволило ученым добавить бром (Br) в список необходимых для жизни элементов и поставить его в один ряд с кальцием, калием. Он особенно необходим для строения тканей и многие его функции еще исследуются учеными. Велика вероятность, что вы получаете достаточное количество минерала из любимых продуктов. Существует также риск его избытка.

Роль брома в организме

О пользе минерала для человека стало известно в XXI веке. Ученые выяснили, что он легко всасывается в кишечнике, имеет период полувыведения около 12 дней и необходим особому ферменту пероксидазе. С его помощью фермент образует особую связь и отвечает за архитектуру тканей.

Важно помнить, что бром не является безопасным веществом и в избытке может быть вредным для здоровья. Например, значительное повышение уровня брома в плазме повышает концентрацию тиреотропного гормона (ТТГ) в крови. Это последствия действия минерала на щитовидную железу – в избытке он снижает ее активность. [1]

Бром в еде: концентрация, усвоение

Минерал никогда не встречается в природе в элементарной форме – представлен в виде органических соединений, известных как бромиды, и природных броморганических. Они встречаются в воздухе, почве, воде, солях. Вы можете потреблять их даже из популярных напитков, таких как Coca-Cola.

Минерал был обнаружен даже в питьевой воде. Ученые выяснили, что под воздействием озона из него образуются ионы бромата, которые являются очень сильными окислителями – вредят организму. Однако в настоящее время человек больше подвергается воздействию бромидов через продукты питания из-за использования бромсодержащих фумигантов в садоводстве, обработке пищевых запасов. [2]

Продукты питания, которые содержат бром

Многие люди получают слишком много брома, так как он входит в состав добавок, продуктов, блюд:

• пестициды, используемые в сельском хозяйстве, содержат бромистый метил;

• следовые количества микроэлемента обнаруживаются в муке, хлебобулочных изделиях;

• многие безалкогольные, изотонические напитки со вкусом колы и цитрусовых содержат бромид.

Люди часто подвергаются воздействию бромистых соединений через плохо вымытые фрукты и овощи, так как на них остаются пестициды. С покупных фруктов порой лучше срезать кожицу – в них может оставаться много токсичных соединений. Мука из пшеницы, кукурузы и других злаков тоже может быть загрязнена бромсодержащими пестицидами. Бромат калия еще часто используется в качестве добавки к хлебобулочным изделиям – делает тесто более эластичным, упругим. [3]

Крупнейший резервуар микроэлемента – океан с концентрацией 65–80 мг/л брома. Поэтому ценный компонент содержится во многих морепродуктах, таких рыба и моллюски. Исследователи обнаружили его даже в морских водорослях. [4]

Оптимальная суточная доза брома для профилактики дефицита

Бром не нужен организму в больших количествах – достаточно 1 мг/кг массы тела. Но во многих странах ежедневное употребление составляет 2–8 мг/кг из-за неправильного рациона, в котором слишком много выпечки, круп, вредной рыбы, орехов. В таких дозировках вещество может проявлять токсичные свойства. [5, 6]

Топ-3 полезные свойства брома, подтвержденные исследованиями

1. Необходим для образования коллагена

В 1980-х исследователи обнаружили у некоторых людей дефекты в коллагене-IV – белке, необходимом для развития тканей. Этих людей также объединял дефицит брома. Оказалось, что ионный бромид помогает ферментам строить фибриллярный белок, который лежит в основе соединительной ткани – сухожилий, костей, хрящей, дермы. [7]

2. Способствует нормальному сну

Микроэлемент был открыт как седативное соединение, вызывающее сон – обнаруживается в достаточном количестве у спящих людей и его не хватает у людей с бессонницей. Открытие заключается в том, что компонент вызывает быстрый сон. Ученые обнаружили, что его концентрация в крови сильно снижается во время гемодиализа. Это часто приводит к бессоннице у пациентов, находящихся на диализе. [8]

3. Уменьшает накопление липидов в клетках печени

Повышенное накопление свободных жирных кислот (СЖК) и триглицеридов (ТГ) провоцирует жировую болезнь печени. Клинические исследования показывают, что чем выше уровни бромида в крови, тем ниже эти показатели, общий и "плохой" холестерин. Однако способ влияния бромида на накопление липидов до сих пор неизвестен. [9]

Взаимодействие брома с витаминами и микроэлементами

Бром входит в семейство галогенидов, к которым относят хлор, фтор, йод. Он обладает сходными с ними свойствами, а с йодом у него существует обратная связь – когда его уровень повышается, концентрация йода падает и наоборот. Отсутствие баланса наносит организму большой вред.

Бром опасен тем, что конкурирует с йодом за одни и те же рецепторы – действует как его заменитель, мешает усвоению. Поскольку йод нужен щитовидной железе для выработки гормонов, это приводит к выраженной недостаточности щитовидной железы (гипотиреозу).

Применение в медицине

Более века назад бром был введен в медицину как противоэпилептическое, противосудорожное, седативное средство. В 50-х годах с ним были доступны лекарства для лечения кислотозависимых заболеваний ЖКТ. Они были сняты с продажи в некоторых штатах Америки в 1975 году, но до сих пор доступны за их пределами.

Сегодня минерал содержится в некоторых лекарствах, таких как ингаляторы, назальные спреи, газообразные анестетики. Бромат калия встречается в жидкостях для полоскания рта, антисептиках для лечения воспаленных или кровоточащих десен.

Бром в научных исследованиях

• Бром влияет на накопление йодида не только в щитовидной железе, но и в коже. Его высокое потребление может снижать запасы йода в организме, увеличивать его выведение из кожных покровов. Такие эффекты проявляются при дозировке от 150 мг/день. [10]

• Бромидная интоксикация стала редкой болезнью. Считается, что снижение заболеваемости связано с уменьшением использования бромидов, снижением их доступности. Однако бромизм время от времени развивается даже под наблюдением врачей из-за недосмотра и неспособности распознать побочные эффекты. Микронутриент может усугубить болезнь, для лечения которой назначался. [11, 12]

• Изучение лечебных свойств бромида показало, что его сложно применять в любой медикаментозной терапии. Три группы по 8 здоровых добровольцев принимали 15, 24 и 30 мг бромида калия ежедневно в течение 20 недель. Концентрации соединения в крови измеряли у всех участников каждые две недели. Результаты в каждой группе сильно отличались, что говорит о разном усвоении компонента – врачам сложно предсказать его полезные эффекты. [13]

• Избыток брома повышает риск преждевременных родов – не дает организму усваивать йод, необходимый для будущих матерей. Следить за его потреблением сложно, так как он часто применяется для очистки воды. Ученые также нашли связь между воздействием бромида и врожденными дефектами. [14, 15]

• Недавние исследования показали, что применяемый в выпечке бромат калия вызывает окислительное повреждение ДНК. Международное агентство по изучению рака причислило его к группе канцерогенов. Люди ежедневно потребляют это соединение и врачей пугают возможные негативные последствия. [16, 17]

Потенциальный вред брома: осложнения и предупреждения

Люди могут поглощать органические соединения брома через кожу, при дыхании, с пищей. Наиболее важные негативные последствия для здоровья могут быть вызваны бромсодержащими органическими соединениями, которые нарушают работу нервной системы. Они также могут вызывать повреждения печени, почек, легких и ЖКТ. Неорганические бромы встречаются в природе и тоже могут повредить нервную систему, щитовидную железу.

Дефицит брома – симптомы, последствия

Исследования показывают, что минерал необходим для развития тканей всех живых существ – от примитивных морских животных до человека. Без него у людей появляются проблемы со сном. А его добавление в рацион пациентов, находящихся на диализе и полном внутривенном питании, улучшает их здоровье.

 

Симптомы избытка брома

Когда бром в большом количестве попадает в организм, он делает две вещи:

• заменяет йод, что может привести к снижению активности щитовидной железы;

• оказывает прямое токсическое воздействие на ткани.

В настоящее время имеются предварительные данные о том, что высокий уровень может вызывать рак щитовидной железы, простаты, яичников. Проникая в нервы головного мозга, он может привести к эмоциональным проблемам, таким как нестабильность настроения, депрессия, психоз, тревога. Есть также сообщения о том, что некоторые случаи шизофрении связаны с отравлением бромом.

Другие побочные эффекты брома:

• узелковая угревая сыпь, сухость, зуд;

• анорексия, спазмы в животе и вздутие;

• чрезмерная утомляемость;

• металлический привкус во рту;

• нестабильный сердечный ритм.

Будьте осторожны и помните, что минерал находится повсюду. Ограничивая его воздействие, вы сможете избежать его токсичности. [18, 19, 20]

Взаимодействие брома с лекарственными препаратами

Микроэлемент плохо сочетается с некоторыми антибиотиками, анестетиками, миорелаксантами и лекарствами для лечения стенокардии. Тем не менее происходит это только при употреблении большой дозы минерала, превышающей дневную норму.

Комментарий эксперта

Татьяна Елисеева, диетолог, нутрициолог

Бром играет важную роль в поддержании здоровья, но, скорее всего, вам не нужно вносить какие-либо изменения в свой рацион для его получения. Его соединения добавляют в выпечку и напитки, бромистым метилом опрыскивают клубнику для борьбы с вредителями… Риск избытка выше риска недостатка, поэтому не стоит уделять ему много внимания. Лучше сосредоточиться на потреблении труднодоступных для организма минералов.

Источники информации

1. Bromine and thyroid hormone activity, https://pubmed.ncbi.nlm.nih.gov/8320326/

2. Bottled water safety evaluations in IRAN: determination of bromide and oxyhalides (chlorite, chlorate, bromate) by ion chromatography, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7721822/

3. The toxic chemistry of methyl bromide, https://pubmed.ncbi.nlm.nih.gov/23800997/

4. Iodine and bromine in fish consumed by indigenous peoples of the Russian Arctic, https://pubmed.ncbi.nlm.nih.gov/32214169/

5. The no-effect level of sodium bromide in healthy volunteers, https://pubmed.ncbi.nlm.nih.gov/8094973/

6. The toxicology of bromide ion, https://pubmed.ncbi.nlm.nih.gov/3325227/

7. Bromine is an essential trace element for assembly of collagen IV scaffolds in tissue development and architecture, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144415/

8. A role for bromine deficiency in sleep disturbances of long-term dialysis patients, https://pubmed.ncbi.nlm.nih.gov/17162163/

9. Bromide alleviates fatty acid-induced lipid accumulation in mouse primary hepatocytes through the activation of PPARα signals, https://pubmed.ncbi.nlm.nih.gov/31033195/

10. High bromide intake affects the accumulation of iodide in the rat thyroid and skin, https://pubmed.ncbi.nlm.nih.gov/11697762/

11. Bromide intoxication, https://pubmed.ncbi.nlm.nih.gov/131871/

12. The neurological effects of methyl bromide intoxication, https://pubmed.ncbi.nlm.nih.gov/24094859/

13. Bromide as a marker to measure adherence to drug therapy, https://pubmed.ncbi.nlm.nih.gov/16525815/

14. The effect of water disinfection by-products on pregnancy outcomes in two southeastern US communities, https://pubmed.ncbi.nlm.nih.gov/21915074/

15. Risk of birth defects in Australian communities with high levels of brominated disinfection by-products, https://pubmed.ncbi.nlm.nih.gov/18795174/

16. Mechanism of DNA damage induced by bromate differs from general types of oxidative stress, https://pubmed.ncbi.nlm.nih.gov/16457930/

17. Potassium bromate, a potent DNA oxidizing agent, exacerbates germline repeat expansion in a fragile X premutation mouse model, https://pubmed.ncbi.nlm.nih.gov/20213777/

18. Effects of sodium bromide on the biosynthesis of thyroid hormones and brominated/iodinated thyronines, https://pubmed.ncbi.nlm.nih.gov/2135954/

19. Interaction of bromine with iodine in the rat thyroid gland at enhanced bromide intake, https://pubmed.ncbi.nlm.nih.gov/8909694/

20. Bromism or chronic bromide poisoning, https://pubmed.ncbi.nlm.nih.gov/8309208/

Ванадий (V)



Это элемент с нетипичными биологическими функциями. Американская ассоциация диетологов AmDAssoc считает минерал незаменимым для людей, особенно для мужчин и женщин старше 41 года. Он участвует в окислительно-восстановительных реакциях, обладает противораковой функцией, улучшает действие инсулина и приносит еще много пользы здоровью. Давайте рассмотрим его основные свойства, доказанные научными исследованиями.

Ванадий в организме

Микроэлемент плохо усваивается в кишечнике – от 0,2 до 5%. К счастью, это не проблема, ведь он необходим в следовых количествах и токсичен в избытке. Но стоит помнить, что дефицит, как и чрезмерные концентрации, могут привести к ряду патологий, вызвать необратимые повреждения тканей, органов.

Общее содержание многовалентного металла в организме взрослых составляет 100–200 мкг. Половина всего количества находится в костях, а остаток в основном откладывается в почках, печени, селезенке. Мизерное количество обнаруживается в мышцах, легких и мозге.

Известно, что микронутриент может менять и подавлять действие белка. В определенных условиях он влияет на метаболизм эритроцитов, передачу внутриклеточных сигналов, накопление и транспорт кальция в клетках. Кроме того, он регулирует активность ключевых ферментов, принимает участие в углеводном и липидном обмене, формировании клеток разного назначения и разрастании тканей. [1, 2]

Ванадий в еде

Ванадил и ванадат – самые биологически значимые формы минерала. Особенно распространен сульфат ванадила, который используют в пищевых добавках. Микроэлемент также встречается в соединениях с валентностью I, II, IV и V, среди которых наиболее популярны две последние группы.

Продукты питания с высокой концентрацией ванадия

Богатыми источниками питательного вещества считаются продукты с микронутриентом более 1 ppm (миллионная доля), а содержание от 1 до 5 нг/г считается низким.

7 продуктов с максимальным содержанием ванадия

№      Продукты      нг/г

1      Грибы      50–2000

2      Петрушка сушеная      1800

3      Черный перец      987

4      Шпинат, подвергнутый вакуумно-сублимационной сушке      533–840

5      Семена укропа      431

6      Цельные зерна и крупы      5–30

7      Продукция из коровьего молока      5–30

Много полезного компонента можно получить из моллюсков, пива, вина, напитков с искусственными подсластителями. [3, 4]

Рекомендованная суточная норма

В настоящее время нет установленных доз для оптимального потребления минерала. Национальный институт медицины NIH (учреждение Департамента здравоохранения США) определил допустимый верхний предел, при котором нет нежелательных побочных эффектов – 1,8 мг для взрослых. Безопасные дневные дозы для младенцев, детей, беременных и кормящих женщин пока неизвестны.

Исследования показывают, что при приеме 7,8–10 мг микронутриента в день в течение 2 недель не проявляются неблагоприятные симптомы. Проблемы провоцируют дозы 14–42 мг – при избытке нарушается работа ЖКТ.

Потребление вещества зависит от диеты и в среднем европеец получает с пищей 15–20 мкг/день, а американец – от 10 до 60 мкг/день. Пищевые добавки содержат разное количество микронутриента – концентрация зависит от используемого химического соединения. Например, в сульфате сосредоточено примерно 31% элементарного ванадия, в метаванадате натрия – 42%, а ортованадате натрия – 28%.

6 полезных свойств ванадия для детей, мужчин и женщин

1. Усиливает действие инсулина, предотвращает развитие диабета

Высокие дозы ванадил сульфата (около 100 мг/день) улучшают использование инсулина организмом. Этот гормон отвечает за усвоение глюкозы и регулирует ее уровень в крови, поэтому при добавлении минерала в рацион снижается сахар в крови даже у людей с диабетом. Правда, у исследователей есть опасения по поводу высоких доз, так как они могут вызвать нежелательные эффекты при длительном применении. [5, 6]

2. Проявляет антиоксидантные свойства и защищает почки

Эксперименты на крысах показали, что после лечения ванадием у грызунов усилился метаболизм глюкозы, ее утилизация, чувствительность к инсулину при ожирении и улучшилось состояние печени. Кроме глюкозы ванадил сульфат снижал концентрацию мочевины и креатинина в крови, уменьшал окислительный стресс и поддерживал нормальную работу почек. [7, 8, 9, 10, 11]

3. Борется с бактериями, вирусами, грибками и паразитами

Механизм антибактериальной активности металла до конца не выяснен, но известно, что он проникает через стенки бактерий, вызывает их морфологические изменения и препятствует делению. Также минерал блокирует репликацию вируса иммунодефицита человека ВИЧ-1/ВИЧ-2, предотвращая его размножение и защищая от развития инфекции. Он способен уничтожать внутриклеточные патогены и помогать иммунной системе. [12, 13]

4. Борется с опухолями

Антиканцерогенная активность компонента еще требует изучения, но его соединения и комплексы уже показали себя как эффективные средства для борьбы с онкообразованиями. Огромное значение имеют антиоксидантные свойства минерала и его способность защищать клеточный метаболизм. Новые исследования показывают, что его можно рассматривать как легкодоступный, многообещающий химиопрофилактический агент против рака. [14, 15, 16, 17]

5. Нормализует уровень холестерина и работу сердца

Органические и неорганические соединения действуют как кардиозащитные агенты. Они улучшают работу сердца, защищают от ишемии, предотвращают гипертензию и гипертрофию миокарда. Дополнительные кардиопротекторные механизмы – усиление катаболизма глюкозы, стимуляция ее транспорта и нормализация уровня в клетках миокарда. [18, 19, 20, 21, 22]

6. Регулирует аппетит и помогает бороться с ожирением

Исследования на грызунах показали, что введение в рацион минерала приводит к снижению аппетита, меньшему потреблению пищи. В результате уменьшается концентрации лептина в крови (гормон, регулирующий аппетит) и массы тела. [23]

Взаимодействие ванадия с другими микроєлементами

• хром, хлорид, ионы двухвалентного железа и гидроксид алюминия снижают его абсорбцию;

• магний, витамины С и Е, полифенолы, фитостеролы борются с токсичностью минерала при его избытке – снижают окислительный стресс.

Применение в медицине

Противовирусная, антибактериальная, антипаразитарная, противогрибковая, противораковая, антидиабетическая и антигиперхолестеринемическая активность, а также кардиопротекторный и нейропротекторный эффекты вызывают интерес многих исследовательских центров. Для улучшения метаболизма глюкозы и чувствительности к инсулину человеку необходимы микрограммовые количества элемента, а значит, он может быть терапевтически активными при низких концентрациях.

Комплексы и соединения металла уже применяются в тканевой инженерии для получения биоматериалов. Их используют для регенерации поврежденных тканей, органов и восстановления их утраченных функций. Также ванадий входит в состав металлических биоматериалов в костной хирургии (протезов).

Исследования показали, что некоторые комплексы элемента борются с вирусами, включая ВИЧ, грипп, атипичную пневмонию, лихорадку денге. Они также могут быть эффективны в борьбе с кандидозом, микозом и бактериями, которые провоцируют отравление, респираторные инфекции, брюшной тиф, острый фарингит, туберкулез и кожные заболевания. [24]

В научных исследованиях

• Минерал может действовать не как антиоксидант, а наоборот – быть прооксидантом и усиливать окислительный стресс. Это приводит ко многим негативным последствиям, включая деградацию ДНК, денатурацию белков. В таком случае он ослабляет антиоксидантный барьер и повреждает клетки, как это делают свободные радикалы. Также он может высвобождать некоторые переходные металлы, накапливаться в печени и почках, вызывая гепато- и нефротоксические эффекты. [25, 26]

• Имплантаты из титановых сплавов с ванадием подвергаются воздействию жидкостей организма – минерал может высвобождаться в окружающие ткани и оказывать неблагоприятное воздействие. Поэтому поверхностный слой протеза часто модифицируют, чтобы вызвать специфическую реакцию тканей, безопасную для здоровья. Это касается как ортопедических, так и зубных протезов. [27]

 

• Любители силовых тренировок используют сульфат ванадила для улучшения спортивных результатов. Ранее это вызывало опасения в научной среде – ученые предполагали, что добавки могут привести к анемии, изменениям в системе лейкоцитов. Исследования, проведенные на спортсменах, опровергли предположения – такие добавки не влияют количество эритроцитов, лейкоцитов, тромбоцитов, вязкость крови и биохимию. [28]

Опасные свойства ванадия

Обычное количество микроэлемента в рационе (менее 30 мкг/день) имеет низкую токсичность. Однако его способность к накоплению и сильный токсикологический потенциал ограничивают его использование в фармакологии. А способность понижать уровень сахара в крови вынуждает людей с гипогликемией тщательно следить за потреблением компонента, избегать его в добавках и лекарствах. [29]

Дефицит ванадия в организме и симптомы

Признаки нехватки элемента у человека пока не установлены. Исследователи лишь предполагают, что дефицит может повышать уровень холестерина и сахара в крови, приводить к дегенерации позвоночника и диабету. В исследовании, проведенном на козах, его дефицит в течение трех лет вызывал у животных необратимую деформацию костей и некоторые из них умирали.

Избыток ванадия и симптомы

Токсичность минерала зависит от многих факторов, включая состав пищи, тип соединения (органическое/неорганическое), присоединение к комплексам, валентность. Не меньшее значение имеет продолжительность воздействия и индивидуальная чувствительность. Считается, что элемент опасен в дозировке более 1,8 мг/день. Тем не менее большие дозы используются при лечении разных заболеваний, что может вызывать нежелательные побочные эффекты:

• дискомфорт в животе, вздутие;

• диарею;

• тошноту;

• зелено-черный язык;

• потерю аппетита и энергии;

• снижение веса;

• проблемы с нервной системой.

Элемент опасен при использовании в больших количествах продолжительное время. В таком случае увеличивается риск повреждения почек и других органов.

Взаимодействие с препаратами

Прием минерала вместе с лекарствами от диабета может привести к слишком низкому уровню сахара в крови. Микронутриент также может замедлить свертываемость крови, а его прием с лекарствами, которые замедляют свертываемость, увеличивает вероятность синяков и кровотечений.

Комментарий эксперта

Татьяна Елисеева, диетолог, нутрициолог

Ванадий вызывает интерес ученых и врачей благодаря биологической активности и широкому спектру действия. Он улучшает толерантность к глюкозе, ингибирует синтез холестерина. Количество исследований по его использованию в медицине постоянно растет и можно предположить, что новые препараты на основе минерала вскоре будут доступны для лечения многих опасных для жизни заболеваний. А пока можно получать вещество из общедоступных и недорогих продуктов питания, которые не относятся суперфудам.

Источники информации

1. Is vanadium of human nutritional importance yet? https://pubmed.ncbi.nlm.nih.gov/8046184/

2. Vanadium Ions and Proteins, Distribution, Metabolism, and Biological Significance, https://link.springer.com/referenceworkentry/10.1007/978-1-4614-1533-6_136

3. Vanadium content of selected foods as determined by flameless atomic absorption spectroscopy, https://pubmed.ncbi.nlm.nih.gov/838964/

4. Vanadium in foods and in human body fluids and tissues, https://pubmed.ncbi.nlm.nih.gov/684404/

5. Vanadium and diabetes, https://pubmed.ncbi.nlm.nih.gov/9823013/

6. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6373340/

7. Oral treatment with vanadium of Zucker fatty rats activates muscle glycogen synthesis and insulin-stimulated protein phosphatase-1 activity, https://pubmed.ncbi.nlm.nih.gov/12190110/

8. Effects of diabetes, vanadium, and insulin on glycogen synthase activation in Wistar rats, https://pubmed.ncbi.nlm.nih.gov/11952162/

9. Effects of vanadyl sulfate on kidney in experimental diabetes, https://pubmed.ncbi.nlm.nih.gov/14555801/

10. Effect of vanadyl sulfate on the status of lipid parameters and on stomach and spleen tissues of streptozotocin-induced diabetic rats, https://pubmed.ncbi.nlm.nih.gov/16431126/

11. Metabolic effects of vanadyl sulfate in humans with non-insulin-dependent diabetes mellitus: in vivo and in vitro studies, https://pubmed.ncbi.nlm.nih.gov/10726921/

12. The antibacterial activity of polyoxometalates: structures, antibiotic effects and future perspectives, https://pubmed.ncbi.nlm.nih.gov/29355262/

13. In Vitro Anticandidal Activity and Mechanism of a Polyoxovanadate Functionalized by Zn-Fluconazole Complexes, https://pubmed.ncbi.nlm.nih.gov/29747400/

14. Biochemical and medical importance of vanadium compounds, https://pubmed.ncbi.nlm.nih.gov/22693688/

15. Vanadium suppresses sister-chromatid exchange and DNA-protein crosslink formation and restores antioxidant status and hepatocellular architecture during 2-acetylaminofluorene-induced experimental rat hepatocarcinogenesis, https://pubmed.ncbi.nlm.nih.gov/14678523/

16. Vanadium chemoprevention of 7,12-dimethylbenz(a)anthracene-induced rat mammary carcinogenesis: probable involvement of representative hepatic phase I and II xenobiotic metabolizing enzymes, https://pubmed.ncbi.nlm.nih.gov/11097089/

17. Solid state and solution studies of a vanadium(III)-L-cysteine compound and demonstration of its antimetastatic, antioxidant and inhibition of neutral endopeptidase activities, https://pubmed.ncbi.nlm.nih.gov/15149802/

18. Cardioprotection by vanadium compounds targeting Akt-mediated signaling, https://pubmed.ncbi.nlm.nih.gov/19423951/

19. Effects of oral vanadyl treatment on diabetes-induced alterations in the heart GLUT-4 transporter, https://pubmed.ncbi.nlm.nih.gov/9299359/

20. Characterization of vanadyl sulfate effect on vascular contraction: roles of calcium and tyrosine phosphorylation, https://pubmed.ncbi.nlm.nih.gov/9103536/

21. Vanadyl sulfate lowers plasma insulin and blood pressure in spontaneously hypertensive rats, https://pubmed.ncbi.nlm.nih.gov/7960024/

22. Influence of vanadium on serum lipid and lipoprotein profiles: a population-based study among vanadium exposed workers, https://pubmed.ncbi.nlm.nih.gov/24558984/

23. Vanadate enhances leptin-induced activation of JAK/STAT pathway in CHO cells, https://pubmed.ncbi.nlm.nih.gov/12646241/

24. Vanadium compounds in medicine, https://pubmed.ncbi.nlm.nih.gov/32226091/

25. Evaluation of lipid peroxidation and antioxidant defense mechanisms in the bone of rats in conditions of separate and combined administration of vanadium (V) and magnesium (Mg), https://pubmed.ncbi.nlm.nih.gov/29453945/

26. Effects of combined vanadate and magnesium treatment on erythrocyte antioxidant defence system in rats, https://pubmed.ncbi.nlm.nih.gov/21787646/

27. Vanadium: Risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7152879/

28. Oral vanadyl sulphate does not affect blood cells, viscosity or biochemistry in humans, https://pubmed.ncbi.nlm.nih.gov/9140141/

29. Selective speciation improves efficacy and lowers toxicity of platinum anticancer and vanadium antidiabetic drugs, https://pubmed.ncbi.nlm.nih.gov/27751591/