Кровавый коктейль. Из чего состоит и как функционирует ваша кровь

Tekst
3
Recenzje
Przeczytaj fragment
Oznacz jako przeczytane
Jak czytać książkę po zakupie
Nie masz czasu na czytanie?
Posłuchaj fragmentu
Кровавый коктейль. Из чего состоит и как функционирует ваша кровь
Кровавый коктейль. Из чего состоит и как функционирует ваша кровь
− 20%
Otrzymaj 20% rabat na e-booki i audiobooki
Kup zestaw za 26,25  21 
Кровавый коктейль. Из чего состоит и как функционирует ваша кровь
Audio
Кровавый коктейль. Из чего состоит и как функционирует ваша кровь
Audiobook
Czyta Павел Михеев
15,95 
Zsynchronizowane z tekstem
Szczegóły
Czcionka:Mniejsze АаWiększe Aa

Любую дорогу можно искусственно сузить и расширить, сосуд тоже сужается и расширяется – подчиняясь командам, передающимся по нервным волокнам. Эти команды передает центр в головном мозге, который называется сосудодвигательным. Потому что управляет движением стенок сосудов. Сосудодвигательный центр относится к вегетативной части центральной нервной системы и находится в продолговатом мозге между головным и спинным мозгом.

Кроме нервной регуляции есть регуляция гормональная, ее еще называют гуморальной, то есть зависящей от содержания в крови определенных веществ – регуляторов, или медиаторов (посредников). Медиаторы работают не на весь организм, а на отдельный участок ткани или орган: в коже, сердце, печени или других местах.

Управление диаметром просвета артерий и вен – очень важный и довольно сложный механизм. Чем уже может стать сосуд, тем выше будет периферическое сопротивление сосудов давлению и току крови (в дальнейшем этот термин мы сократим до ПСС и периодически будем о нем вспоминать).

Сужение и расширение позволяют выбросить кровь из «депо» или, наоборот, уменьшить ее количество в крупных сосудах и кровеносном русле. Это бывает нужно, чтобы не допустить потери сознания от кровопотери, и происходит на первой фазе шока при кровотечении, до или после остановки кровотечения.

А почему так важно при ранении какое-то время не терять сознания? Чтобы дать возможность человеку убраться из опасного места в безопасное, где «отключиться» уже можно, и позволить организму или справиться с проблемой и вернуться в сознание, или умереть.

ПОТЕРЯ СОЗНАНИЯ ПРИ КРОВОТЕЧЕНИИ, КАК И ЯВЛЕНИЯ КОЛЛАПСА, СУБЪЕКТИВНО ВОСПРИНИМАЮТСЯ ЧЕЛОВЕКОМ КАК НЕЧТО СТРАШНОЕ. НО ОНИ ВТОРИЧНЫ, ЭТО РЕАКЦИЯ РАБОТЫ МОЗГА И СОЗНАНИЯ НА СОБЫТИЕ, КОТОРОЕ, ЕСЛИ НИЧЕГО НЕ ИСПРАВИТЬ И НЕ ПРЕРВАТЬ ПОТЕРЮ КРОВИ, МОЖЕТ ПРИВЕСТИ К СМЕРТИ.

Оттого и случается, например, обморок при виде крови. Это подсознательная защитная реакция организма на сигнал «опасность»!

Есть более прагматичная причина, по которой раненый с кровопотерей теряет сознание еще до того, как это приведет к коллапсу. Это необходимость привести организм в состояние покоя, уменьшить потребление энергии, дать возможность крови наилучшим образом распределиться и, главное, облегчить ее поступление в мозг. И чтобы сердцу стало легче его питать, нужно все органы расположить горизонтально.

Кроме этого, раненый и постоянно двигающийся человек тревожит рану, которая, находись он в состоянии покоя, возможно, давно бы уже закрылась тромбами и начала заживать. Но человек все теребит ее, теребит, и поэтому кровь никак не остановится и продолжает вытекать из сосудов наружу или в полость внутри организма.

Что происходит в организме при травме? Ломаются и разрываются сосуды, рвутся ткани. В них выходит кровь, содержимое разбитых клеток. Реагируют на это в первую очередь болевые рецепторы. Боль ограничивает подвижность в поврежденном месте, а в ответ на разрушение стенок сосудов организм запускает тромбообразование, чтобы остановить кровотечение.

Одновременно потеря крови приводит к централизации кровообращения, то есть кровь уходит из здоровых тканей, которые могут перенести голодание без особого вреда, и перебрасывается из мелких сосудов в крупные. Это явление временное, некоторые ткани спокойно выдерживают такое состояние несколько часов. Но нервная ткань не входит в их число: клетки мозга не переносят голодания и отсутствия кислорода дольше 5–7–10 минут в зависимости от температуры тела и окружающей среды.

Как уже говорилось, артерии берут начало пути от сердца, и первая на этом пути аорта. Этот сосуд очень плотный, но не имеет мышечного слоя в стенке. Зато сама стенка крепкая – для того чтобы выдерживать очень высокое давление: артериальное систолическое в момент сокращения сердца (систолы) и диастолическое в момент его расслабления (диастолы). Диастолическое давление возникает от ПСС. Так что на стенку аорты постоянно оказывается давление изнутри. Именно это давление характеризуют «нижние» цифры, которые показывает аппарат для измерения давления – тонометр.

Снаружи аорта тоже под давлением, но уже меньшим, оно зависит от напряжения мышц, образующих брюшную полость. Если мышцы живота сильно напряжены, то давление в аорте намного больше систолического. Бывает, что это приводит к разрыву аорты или образованию выпячивания, или истончения стенки.

Разрыв аорты часто начинается с расслоения стенки и образования аневризмы – подобия мешка, в котором структура стенки тоньше, чем у здорового сосуда. Аневризма активно пульсирует и напоминает такое образование, как грыжа. Представьте, как выглядела бы грыжа на автомобильном колесе или садовом шланге. Аневризма образовывается в результате двух причин: врожденной слабости «коллагеновой арматуры» и регулярных критических повышений артериального давления.

Рис. 3. Аорта


Стенка аневризмы – это постоянная угроза разрыва. Аневризма может появиться где угодно: в животе, в легких, но наибольшую опасность представляют аневризмы артерий мозга и аорты. В головном мозге аневризма небольшой артерии может стать причиной смерти. Она может образоваться в любом возрасте: и в детстве, и после травм черепа (тяжелых сотрясений), и как результат гипертонических кризов – резких повышений артериального давления.

Теперь поговорим о венах. Они начинаются от венул в тканях и органах, собирают из капилляров венозную кровь. Восходящее движение крови в сторону сердца обеспечивает шевеление мышц и органов вроде кишечника, а также приводит в движение кровь клапаны внутри вен. Движения тканей, мышц и пульсация проходящих рядом с венами артерий также вызывает сокращение вен, а клапаны, расположенные в их просвете, не позволяют крови двигаться в обратную сторону. Это как коридор с дверями, пройдя которые, обратно уже не выйдешь. И каждый следующий коридор чуть шире предыдущего.

Давление в венозной сети намного ниже артериального и измеряется не ртутным, а водным столбом.

Именно куда меньшим давлением объясняется различие в строении вены и артерии: стенка вены заметно слабее[11]. Если артериальное давление зависит от двух факторов: силы сердечного выброса крови и тонуса периферических артерий, то венозное держится в основном за счет движения крови от тканей к сердцу и даже в случае остановки сердца довольно долгое время сохраняется в организме, наполняя кровью легкие и вызывая их отек.

Венозная сеть обширна, имеет особые образования: сплетения, или резервуары, например синусы. Между артериальной и венозной системой имеются особые перебросы, закрытые со стороны артерий клапанами, они называются «шунты».

КЛАПАНЫ ОТКРЫВАЮТСЯ, ЕСЛИ ДАВЛЕНИЕ В АРТЕРИАЛЬНОЙ СИСТЕМЕ СТАНОВИТСЯ НИЖЕ, ЧЕМ В ВЕНОЗНОЙ, НАПРИМЕР ПРИ КОЛЛАПСЕ ИЛИ КРОВОТЕЧЕНИИ. ЭТА МЕРА ПОЗВОЛЯЕТ ПЕРЕРАСПРЕДЕЛИТЬ КРОВЬ В ТЯЖЕЛЫХ СОСТОЯНИЯХ.

Иногда эти клапаны оказываются дефектными и не закрываются. Такие открытые шунты называются патологическими и могут вызывать серьезные проблемы вплоть до кровоизлияний в ткани органа и разрыва вен.

Вены нижней части тела собираются в нижнюю полую вену, вены верхней половины тела и головы – в верхнюю полую вену, обе вены сливаются, впадая в правое предсердие сердца.

Вены кишечника, собирающие кровь, обогащенную полезными молекулами различных веществ из расщепленной и всосавшейся пищи, со слизистой, сливаются в большую вену, которая впадает в венозную сеть печени и входит в этот орган через «ворота печени», которым вена и обязана названием «воротная», или vena porta. А все вены, сливающиеся в этот ствол, называются системой портальной вены.


Рис. 4. Круги кровообращения организма


Мы подошли к необходимости описать такую важную систему дорог, как круги кровообращения.

Невозможно понять принцип движения крови по кругам, если не разобраться в том, как устроено сердце. В контексте кровообращения сердце – это четырехкамерный автоматический и автономный[12] насос, разделенный на две половины – правую и левую.

Правая часть сердца качает венозную кровь по малому кругу кровообращения, а левая – артериальную по большому. Малый круг – это сосудистая сеть легких. Большой – сосудистая сеть всего организма. Представили пропорции? В сотни раз малый меньше большого, и объем крови в этих кругах тоже отличается. Поэтому правая половина сердца по своей насосной функции раза в четыре слабее, чем левая, а давление в малом кругу намного ниже давления в большом.

Давление между сосудами, выходящими из правого желудочка, загоняющими кровь в легкие, и сосудами, выводящими из легких перед входом в левое предсердие, почти одинаковое, разница составляет очень незначительную величину. Если в сосудах между легкими и левым предсердием давление по какой-то причине начнет расти, вода в крови станет наполнять легкие и пениться.

 

Часто при сильных физических нагрузках плохо тренированное сердце не справляется с поступающей из легких кровью, и вода пропитывает ткань легкого, снижая функцию газообмена. Тогда возникает чувство нехватки воздуха, одышка и потребность в отдыхе. Если не снизить нагрузку, вода из плазмы крови выйдет в просвет альвеол и начнет пениться – разовьется отек легких. От этого можно умереть.

Такие отеки на финише случаются со спортсменами-чемпионами. Телекомментаторы зрителям не доставляют удовольствия видеть, как задыхаются бегуны на финише, как медики оказывают им помощь, дают дышать кислородом со специальными препаратами, гасящими пену.

Кроме артериальной и венозной крови немалую долю жидкой ткани в организме составляет такая субстанция, как лимфа. Она образуется из межклеточной жидкости, по своему составу похожа на плазму крови, очень жирная, и в ней обнаруживают массу белых клеток крови – лимфоцитов. О них и поговорим в следующей главе.

Тайные дороги лимфоцитов

Внимательный читатель, а особенно те, кто немного разбирается в медицине и уже сталкивался с исследованиями крови, могут сказать: «Стоп. Как же это получается, что моноцит или нейтрофил хватают микроб и тащат в лимфоузел? Ведь при анализе в крови не обнаруживаются никакие нейтрофилы или моноциты с микробами внутри. Как же и где это перетаскивание происходит?»

Вам приходилось видеть в лесу асфальтированные или бетонные дороги, на которых совсем нет машин? Или, проезжая по автотрассе, замечать странные съезды со шлагбаумом или без, но со знаком «проезд запрещен» – «кирпичом»? Это секретные дороги, по ним перемещаются военные машины. В организме таких «тропочек» очень много и все они входят в единую лимфатическую сеть. Лимфатические протоки есть во всех тканях и органах. Обычно вторжение микроорганизмов обнаруживается лейкоцитами в первые часы. Это время составляет инкубационный период и определено скоростью размножения микробов, накопления выделяемых ими токсинов и проникновения ядов в кровь.


Рис. 5. Лимфатическая сеть человека


Сколько времени нужно лейкоцитам, чтобы донести микробов от мозоли на большом пальце ноги до ближайшего лимфоузла? Если считать от момента натирания мозоли до появления воспалительной дорожки по ходу лимфатического протока и до набухания в паху группы лимфоузлов, то от 3–4 часов до суток. Максимальная скорость подъема – примерно 1 см в час, а скорость распространения воспаления с этим почти никак не связана.

Дело в том, что моноциты далеко не всегда доносят «языка». Поэтому, пока реакция иммунитета не стала общей (а это происходит после того, как микроб оказывается в лимфоузле), в первичном очаге идет «бой местного значения». Каждый моноцит тащит «языков» в лимфоузел, и некоторые упускают, иногда микроб оказывается слишком силен, и моноцит погибает в протоке. Тогда микробы продолжают размножаться, благо еды в лимфе очень много, в основном жиров.

И поскольку живые моноциты-макрофаги норовят проглотить захватчиков и тащить их дальше, к лимфоузлу, у микробов очень мало времени для размножения. Они размножаются вопреки всему, иногда даже внутри нейтрофила или макрофага. Все, что успевает микроб в лимфе, – это наскоро ухватить несколько молекул белков, жиров и углеводов теми порами, которые еще не заклеились комплементом, пропердином и калликреином[13], как клейкой лентой; если повезет, один-два раза размножиться; или выделить разные экзотоксины прямо в лимфу[14].

Зачем им последнее? Во-первых, больше некуда, а во-вторых, у некоторых микробов испражнения весьма токсичны и обладают разрушающим действием на все клетки в лимфе и лимфоциты и, что очень важно, на стенки сосудов и на мембраны эритроцитов. Если токсины вызывают массовое разрушение эритроцитов (гемолиз), при выходе свободного гемоглобина в большом количестве в плазму развивается очень тяжелое осложнение – острая почечная недостаточность. Микробы, разрушающие своими токсинами эритроциты, называются гемолитическими (потому что вызывают гемолиз).

Экзотоксины так названы не случайно. Они действительно токсины – яды. Потому что пагубно действуют на клетки оболочки (интимы), выстилающей любые сосуды, лимфатические тоже. Могут они повреждать и специфические клетки: печени, почек, мозга или сердца или суставов.

Я буду периодически вспоминать интиму, потому что ее значение в крово- и лимфообращении огромно. И первая причина этой важности в том, что, воспаляясь, интима может привести к склеиванию сосуда, особенно если он очень тонкий. Такое закрывание называется облитерацией.

Сосуд не просто склеивается фибрином, он буквально зарастает на некотором протяжении, так что его потом уже ничем не пробить, не растворить. Если сосуд потолще и просвет в нем побольше, то воспаление интимы приводит к возникновению бугра или бляшки. Это явление – образование бугров и бляшек в сосудах – называется «атеросклероз». Вообще, sclerosis – это гибель высокоорганизованной ткани (печени, мозга, сердца, почек и т. п.) и замещение ее соединительной тканью – низкоорганизованной, весь смысл которой в том, чтобы просто держать то, что ее окружает, а работать как-то иначе, например как клетки печени, сердца, почек и иных органов, она не может. Замещение клеток мозга соединительной тканью – тоже склероз. В таком случае он приводит к нарушению важной функции мозга – памяти, и потому этот термин вошел в обиход обывателей. Забыв о чем-то, мы часто произносим: «Склероз!» – и хлопаем себя по лбу. Но, пожелтев из-за склероза печени, так не делаем… Хотя и там и там процесс один: специфические клетки заменяются соединительными, а орган утрачивает свои функциональные способности.

Однако вернемся к лимфатическим сосудам. Как и в кровеносной системе, они имеют капилляры (тупиковые сосуды), протоки.

Капилляры собирают жидкость из межклеточного пространства и отправляют в сосуды, те, в свою очередь, соединяясь друг с другом в сеть, поднимают лимфу к лимфатическому узлу, а уж оттуда протоки собираются в один главный лимфатический проток, из которого лимфа сбрасывается в верхнюю полую вену. Это хорошо видно на схеме.


Рис. 6. Слияние лимфатических сосудов в главный проток и его впадение в левую подключичную вену


Как и венозная сеть с ее капиллярами, лимфатическая сеть начинается в межклеточном пространстве (МКП). Она содержит до 30 % всей воды организма.

В лимфатических сосудах есть мышечные волокна и клапаны, как в венах, поэтому движение лимфы подчинено тем же законам, что и движение венозной крови. Нужно, чтобы работали мышцы, между которыми проходят сосуды. Клапаны не дают лимфе течь назад.

Внешне лимфа выглядит как желтоватая мутная жидкость с той же соленостью, что и кровь. Но в лимфе много жиров, то есть основной транспорт жира из тканей в кровь идет через лимфатическую сеть.

Если из-за травмы или воспаления лимфатический сосуд или проток закрывается, перерезается или удаляется[15], отток лимфы из тканей или части тела прекращается, а в этой области происходит локальное ожирение.


Рис. 7. Слоновость ноги при лимфостазе


Лимфатических сосудов нет в хрящах, роговице глаз и хрусталике.

Долгое время считалось, что лимфатической сети нет в головном мозге, однако в 2015 году было доказано наличие лимфатических сосудов и в центральной нервной системе: в головном и спинном мозге.

Итак, лимфатическая сеть – это тайные дороги лейкоцитов, по которым они и двигаются после боя к месту отдыха, если у них вообще бывает отдых. Но чаще всего они направляются к отделению полиции – лимфатическому узлу, где отчитываются о выполненной работе и получают новое назначение. Ведь лимфоциты живут 80–120 суток. Все это время они выполняют поручения, но обычно какое-то одно. Переучивать лимфоциты слишком накладно. Организму проще и выгоднее взять свежеиспеченную клетку и обучить ее, чем гнать по новой в университет – в вилочковую железу (тимус) – и в лимфоузел отправлять старый лимфоцит на переподготовку.

Таким образом, единственное, что может лимфоцит-ветеран, – это поделиться знаниями и опытом с молодежью в лимфатическом узле. И, может быть, повторить свою работу с В-клетками еще раз, если угроза из очага воспаления не исчезла.

Именно в лимфатическом узле Т-лимфоциты проводят инструктаж В-лимфоцитов. И как мы помним, лимфа всегда движется от периферии к центру – к главным сосудам большого круга кровообращения.

Всем нам иногда приходится принимать лекарства внутрь или вводить в кровь инъекцией. Это приводит к тому, что концентрация препарата распределяется по всей воде организма, но работает-то он в конкретном месте.


Рис. 8. Строение лимфатического узла[16]


Вся медицина ориентирована на факторы болезни: местные и общие. При местном воспалении лечение тоже проводится обычно местное. И до определенного момента лечение фокусируется там, где присутствует болезнь. Если вы сами проанализируете и сопоставите болезни и методы, то убедитесь в правильности этого утверждения. Чем начинаем лечить ангину? Полосканиями и антисептическими пастилками. Ушиб лечим прикладыванием холодного на место травмы. Рану обрабатываем антисептиком и заживляющей мазью или гелем.

И только если местно проблему не решить, приступаем к приему «общих» препаратов.

Иммунная система поступает точно так же. Она концентрирует борьбу непосредственно там, где происходит вторжение агрессора или появляется внутренний враг – раковая клетка или раковая ткань (группа клеток).

 

Но она всегда действует по очереди в двух планах: сначала местном и потом в общем.

Так, В-лимфоциты, задача которых вырабатывать специфические антитела, превращаются в плазматические клетки – оседлые в непосредственной близости от очага воспаления и насыщают межклеточное пространство вокруг воспаления иммуноглобулинами. Именно их мы обнаруживаем в крови, потому что они естественным образом попадают туда, но их максимальная концентрация обычно там, где нужны активные действия.

Часть 1
Смотр личного состава. Анатомия и физиология крови

Белые и красные

Если бы не галантерейщик Антони ван Левенгук[17] из голландского города Делфта, который любил в свободное время шлифовать линзы, чтобы рассматривать мельчайшие объекты в пыли и воде, мы бы довольно долго не имели возможности узнать, что такое кровь, и, может быть, до сих пор считали бы ее «одним из соков, текущих по организму»[18].

Любопытный голландец однажды попытался рассмотреть каплю крови в свой микроскоп и был очень удивлен, увидав там в основном красные шарики, которые позже назовут клетками эритроцитами.

Лейкоциты Левенгук сразу разглядеть не мог из-за их прозрачности по сравнению с окрашенными гемоглобином эритроцитами. Уже потом он заметил их, похожих на размазанных бесформенных амеб.

Много ли немедиков рассматривают кровь в микроскоп? У всех ли дома есть микроскопы? Ваш стоит на кухне в шкафу? Вы через него разглядываете продукты, например на предмет роста возбудителей, или изучаете семейный бюджет? Ответы очевидны. Кто-то знает про клетки крови из школьного курса, но большинство обычно видит кровь при порезе пальца во время приготовления пищи или при заточке карандаша перочинным ножом.

ПРЕЖДЕ ЧЕМ НАЧНЕМ РАЗГОВОР НЕПОСРЕДСТВЕННО О КРОВИ, СДЕЛАЕМ КОРОТЕНЬКИЙ ЭКСКУРС В ОСНОВЫ АНАТОМИИ.

Организм – это тело. Тело состоит из органов и мягких тканей, которые натянуты на скелет, состоящий из костей. Кости – тоже ткань: костная. Скелет – это каркас, органом его до сих пор не называли, хотя почему нет? Устроен он весьма непросто. Ткани – это совокупности клеток, однотипных по строению и близких по функциональным возможностям. Всего тканей в организме четыре: соединительная, мышечная, эпителиальная, нервная.

Органы – это структурные объединения однотипных тканей с возможными включениями разнотипных. Например, каркас органа из соединительной ткани – строма, а рабочая ткань – эпителиальная. Все органы и ткани пронизаны сосудами, по которым течет кровь и лимфа.

Что еще? Ткани и клетки, из которых они состоят, можно разделить на низко- и высокодифференцированные. Это как рабочие: чернорабочие и мастера высшего разряда. И тех и других много, сколько надо, но в случае гибели восстанавливаются быстрее чернорабочие, низкодифференцированные, и постепенно они замещаются мастерами по мере роста их квалификации. Чернорабочие – это обычно клетки соединительной ткани. В скорости восстановления им немного уступают клетки эпителия слизистых оболочек. Чем специфичнее ткани, тем сложнее и дольше они ремонтируются, тем дольше на месте их гибели сохраняется рубец из ткани соединительной.

Итак, что же такое кровь?

Кровь – это ткань организма, такая же, как мышцы, кости, кожа и т. п., но жидкая. Она относится к соединительным тканям, и в ней есть все присущие живой ткани компоненты: клетки, строма (своеобразный каркас, организующий ткань или орган) и межклеточное пространство. Отличает кровь от других тканей не только жидкое состояние, но и разнообразие клеток.

Все клетки крови делятся на белые и красные, строма – сосуды, в которых течет, движется кровь, и особый волокнистый белок фибрин, который образуется, если кровь сворачивается. А пока она жидкая и течет, он сохраняется в виде растворенного белка-предшественника – фибриногена.

Все межклеточное пространство крови заполнено водой с растворенными в ней различными органическими и неорганическими веществами.

Из чего еще состоит кровь человека?

Больше всего в ней эритроцитов. Они красные, не имеют ядра, а по форме похожи на бублик без дырки – двояковогнутый диск.

В крови также присутствуют тромбоциты, или, как их еще называют, кровяные пластинки, – они бесцветные и в десятки раз мельче эритроцита. В анализе они обозначаются сокращением PLT (platelets).

И, наконец, лейкоциты – бесформенные бесцветные клетки. Хотя по размеру лейкоциты больше эритроцитов, но в тысячу раз уступают им по численности.

В принципе, это три основных типа форменных элементов крови. Почему я не использовал слова «клеток»? Дело в том, что полноценные клетки в крови – только лейкоциты.

Почему? Напомню внешние характеристики животной клетки (рис. 9) из школьного курса биологии: «Окружена мембраной из двух слоев фосфолипидов, пронизанных белками-ферментами, заполнена цитоплазмой, в которой имеются ядро и органеллы: митохондрии, рибосомы, аппарат Гольджи и «клеточный центр».

Так вот, только у лейкоцитов есть полный набор этих компонентов и больше ни у кого.


Рис. 9. Схема строения клетки человека и животных


«Клеточная стенка»[19] – мембрана – это очень важная структура, она «кожа» клетки, строма, или скелет для укрепления внутри клетки органелл, чтобы они там не болтались, как в мешке. Мембрана животной (человеческой) клетки состоит из двух слоев фосфолипопротеидов. Очень важное свойство мембраны – полупроницаемость, то есть вода через нее проходит легко, а более крупные молекулы – с трудом или даже «за ручку» – принудительно, с помощью белков-ферментов.

Эритроциты в процессе эволюции отказались от клеточного ядра в пользу гемоглобина. Поэтому клеткой эритроцит можно называть только условно, все-таки ядро в юности у него было. Хиленькое такое ядро, напоминающее сетку, за это предшественников эритроцитов называют ретикулоцитами[20]. Однако перед тем как покинуть костный мозг и выйти на работу в свободное плавание, эритроцит окончательно избавляется от ядра. А вот остальные органеллы в нем есть, и митохондрии, и центр Гольджи и другие.

Тромбоциты же даже в юности не имели ядра и больше всего напоминают щепочки, которые невидимым ножом отрезаются от мембраны стволовой клетки в костном мозге. Собственно, поэтому их и назвали не клетками, а пластинками.

С лейкоцитами ситуация совсем иная. Это не просто клетки, а огромная семья различных клеток: от макрофагов-моноцитов (MON) до небольших, но очень многочисленных и воинственных нейтрофилов (NEY). О видах и классификации лейкоцитов будет сказано позже, в главе, посвященной исключительно им, а пока вкратце отмечу, что все лейкоциты делятся на два типа. Первый из них – гранулоциты, которые содержат зерна в цитоплазме. К ним относятся нейтрофилы (Нф), эозинофилы (Эф) ибазофилы (Бф).

Второй тип – агранулоциты. Они не содержат зерен в цитоплазме, имеют несегментированное ядро. В их число входят моноциты (мц) или лимфоциты (лц), причем существует огромное семейство из Т- и В-лимфоцитов. Агранулоциты еще называют мононуклеарами (что переводится как «одноядерные»).

Интерес биологов и морфологов к лейкоцитам обострился уже во второй половине XIX века, когда химических красок, необходимых для текстильной промышленности и прочих нужд, выпускалось достаточно. Изначально лейкоциты описывали по внешнему виду и по отношению к красителям. Почему? Чтобы увидеть лейкоциты в деталях, обнаруженные среди красных эритроцитов прозрачные клетки нужно было покрасить, и не только снаружи: требовалось обозначить контур мембраны, выделить внутренние элементы и ядро. Красители должны были проникнуть внутрь клетки и вступить в реакцию с различными веществами органелл и ядра.

Сейчас используются краски двух типов: кислые и щелочные. Клетки, которые окрашиваются только щелочным красителем, стали называть базофилами, от «базис» – основание (так химики называют щелочи)[21]. Если клетки любят только кислый эозин, то их называют эозинофилами. А если лейкоцит отлично окрашивается обеими красками или нейтральной (по Рh-уровню), то его называют нейтрофилом.

ПО РАЗМЕРАМ И ФОРМЕ ЯДЕР, А ТАКЖЕ ПО ОТНОШЕНИЮ К КРАСИТЕЛЯМ ЛЕЙКОЦИТЫ РАЗДЕЛИЛИ НА ДВА ВИДА: НЕЙТРОФИЛЫ И ЛИМФОЦИТЫ. НЕЙТРОФИЛЫ МЕЛЬЧЕ, ЛИМФОЦИТЫ КРУПНЕЕ.

Теперь несколько слов нужно сказать о жидкой части крови – этом «бульоне», в котором перечисленные форменные элементы путешествуют. Он называется плазмой крови и имеет очень сложный состав из белков, жиров в водорастворимой форме, то есть тоже связанных с белками, и углеводов – проще говоря, это в основном сахарá: глюкоза, фруктоза. Также там 0,9 % раствор поваренной соли Na+Cl- и в небольших количествах калий К+ и кальций Са2+, а еще совсем немного бикарбонатов COH- и фосфатов PO43-, которые относятся к так называемым буферам. В данном контексте буфер означает амортизатор. Обычно это соль, отдельные части которой в растворе могут, вступая в реакцию с ненужными агрессивными элемен-тами[22], гасить эту щелочную или кислотную агрессию и таким образом держать Ph в нужных пределах. Иными словами, они выравнивают кислотно-щелочной баланс в растворе. Это важно, поскольку плазма крови всегда должна сохранять стабильные параметры кислотно-щелочного баланса. Гемоглобин в эритроцитах и белки тоже тщательно следят, чтобы Ph крови не сильно отклонялся от нормы.

Спросите, а с чего это кровь вдруг будет или щелочной, или кислой?

Во время работы глюкоза сгорает, остается углекислый газ, а это что? Правильно, кислота! Но углекислый газ связан с гемоглобином, и если бы он поступал прямо в кровь, там была бы кока-кола с пузырьками! Ну или что-то вроде.

Кроме СО2 в крови оказываются органические кислоты, которые образуются, если тканям не хватает кислорода и глюкоза «не догорела». Это молочная кислота (МК), которую ненавидят спортсмены, пировиноградная (ПВК) и уксусная (УК). Для того чтобы эти хулиганки не отравляли кровь своим присутствием и нужны буферы, которые вступают с ними в реакцию и связывают их, лишая кислотных свойств. При этом временно образуются сложные соли. Почему временно? Потому что то, что может сгореть, обязательно сгорит в ближайшее время, как только найдется нужное количество молекул кислорода, а то, что сгореть не может, через почки или потовые железы обязательно удалится из организма.

ПОСЛЕ ЕДЫ В ЗАВИСИМОСТИ ОТ СОСТАВА СЪЕДЕННОГО В ОРГАНИЗМ МОЖЕТ ПОСТУПАТЬ НЕМАЛО ЩЕЛОЧНОЙ ПИЩИ, И ТОГДА В ДЕЛО ОПЯТЬ ВСТУПАЮТ БУФЕРЫ И ГАСЯТ ИЗБЫТОК PH ПЛАЗМЫ КРОВИ, СДВИГАЯ ЕГО В КИСЛУЮ СТОРОНУ.

Но важно знать, что Ph артериальной крови в норме чуть-чуть отклонен в щелочную сторону, а венозной – в кислую. К слову, в зависимости от части тела кислотность венозной крови тоже отличается: чем ниже, то есть ближе к ногам, тем кровь кислее, чем выше – тем ниже ее кислотность. Но значения эти в норме отличаются на сотые и тысячные доли. А вот если человек болеет или мало двигается, если мышцы не могут нормально гнать венозную кровь к сердцу и легким, то отличия Ph становятся значимыми и могут приводить к отравлению тех тканей, где кровь слишком кислая.

Кислая кровь сильнее и быстрее сворачивается, риск образования тромбов тем выше, чем кислее становится кровь.

Если кровь в артериях ближе к щелочной, а в венах к кислой, то бывает ли так, что артериальная тоже закисает, а венозная защелачивается?

Бывает. Артериальная кровь киснет чаще, и это намного вреднее, чем защелачивание венозной. Венозная стенка рассчитана на экстремальные отклонения, тогда как артерии в целом и выстилка их стенок в частности очень нежные и чувствительные к появлению лишних и довольно агрессивных кислот. Так же как и давление, они разрушают мембраны клеток и интимы сосудов, создавая в этих местах очаги для образования атеросклеротических бляшек и тромбов.

К кислотам нужно отнести сахарá – глюкозу и фруктозу, которые являются очень мощными окислителями и обжигают мембраны клеток, если их концентрация в крови выше 6,6 ммоль/л держится слишком долго, дольше 1–2 часов.

Когда мы берем кровь на анализ, то обычно знаем, что ищем. Если определенные клетки, то красим и считаем их в специальной камере[23], если вещества, то используем реактивы и ориентируемся на два метода: качественный и количественный.

В рамках качественного метода мы определяем, присутствуют ли какие-либо искомые вещества или нет. Буквально: «да» или «нет», + или —. А вот количественный позволяет в случае, если ответ «да», определить, сколько этих «да»-веществ имеется в крови. Значения этих показателей бывают разные в зависимости от системы измерений СГС или СИ, в миллиграммах на децилитр (миллиграмм/проценты) или миллимоль/л. В разных странах приняты разные системы, поэтому приборы-анализаторы обычно перенастраивают по требованию владельцев и согласно медицинским стандартам конкретной страны.

11Обратите внимание на этот факт. Вены из голени берут для аортокоронарного шунтирования при ишемической болезни сердца. Это вынужденная мера, такие шунты, к сожалению, нормально работают максимум от двух до пяти лет, потом из-за слишком большой нагрузки и регулярных надрывов стенки воспаляются и зарастают – облитерируют.
12Даже будучи отключенным от кровообращения и лишенным крови, сердце способно сокращаться примерно сутки.
13Эти вещества выделяются клетками в качестве неспецифической защиты от микробов, и их можно сравнить с коровьими лепешками, в которые микроб вляпывается и начинает вонять. По этому запаху его быстрее находят лимфоциты и нейтрофилы.
14Всего микроб выделяет два вида токсинов: экзо – это его прижизненные продукты, испражнения, и эндо – выделяющиеся в момент его гибели – его внутреннее содержимое. Часто эндотоксины намного ядовитее экзотоксинов. Поэтому с антибиотиками при серьезных воспалениях нужно быть осторожным, можно убить больного, спровоцировав выброс эндотоксинов при массовой гибели микробов.
15Рожистое воспаление, вызванное гемолитическим стрептококком, может привести к закрытию лимфатических сосудов; травма или хирургическая операция при удалении подмышечных лимфоузлов (когда удаляют опухоль молочной железы) приводит к лимфостазу. Как результат – локальное ожирение руки или ноги. Единственный способ удержать конечность от этого – компрессионное белье, которое механически сжимает и не дает лимфе накапливаться в тканях. Выпускаются специальные латексные рукава и чулки для профилактики лимфостаза. Латексное компрессионное белье, как и вакуумный массаж, в несколько раз усиливает лимфодренаж (отток лимфы) из кожи и подкожных тканей, способствуя ускоренному сжиганию целлюлитных жиров и формированию подтянутого внешнего вида, удалению морщин и складок на коже.
16Афферентный – приносящий, втекающий; эфферентный – выносящий, вытекающий. Эти термины пригодятся в будущем.
17Антони ван Левенгук (1632–1723) – оптик, создавший первые микроскопы и тем самым открывший дорогу в микромир. Считается, что А. Левенгук изобрел микроскоп, но это не совсем верно: он изготавливал микролинзы, позволявшие давать увеличение в сотни раз. В 1673 году его письмо было опубликовано в журнале «Философские записки» Лондонского королевского общества. Ему не поверили, и в 1676 году он отправил вторично свои наблюдения одноклеточных организмов, о существовании которых до сих пор не было известно. Группа английских ученых специально поехала в Делфт и подтвердила истинность открытия Левенгука. В 1980 году Левенгук был избран действительным членом Лондонского Королевского общества.
18Теория четырех типов организма, созданная Гиппократом, где четыре вида соков связаны с четырьмя типами темпераментов (холерики, флегматики, сангвиники и меланхолики). Соответственно, сангва – кровь, флегма – мокрота (слизь), холе – желчь, и меланхоле – черная желчь. По мнению Гиппократа, преобладание воздействия одного сока на сознание и характер над другими определяет особенности поведения и болезни человека. Мнение оказалось ошибочным.
19В кавычках это выражение потому, что «клеточная стенка» как термин относится к одноклеточным организмам, и она сильно отличается от клеточной наружной мембраны, которая состоит из двух слоев фосфолипидов со встроенными белками-ферментами.
20От ретикулум (лат. reticulum) – сетка.
21Для окраски мазков крови используют обычно азур-эозин по Романовскому, эозин-метиленовый синий и фиксатор-краситель.
22Которые попадают извне или из микробов.
23Камера Горяева – специальная расчерченная камера, позволяющая под микроскопом посчитать число клеток в одном микролитре крови.