Za darmo

Сколль. Холод и мгла

Tekst
Oznacz jako przeczytane
Czcionka:Mniejsze АаWiększe Aa

Но, не будем более углубляться в дебри. Подробнее, о технических деталях можно узнать на VR-конференциях по программированию. Обращу внимание на то, что скорость разработки кода системы в сорок пять раз быстрей, по сравнению с аналогичными проектами «старых» систем, что позволило начать интеграцию ядра IEM-Предприятия в цифровые платформы производств и лабораторий.

В двух словах о возможностях ядра. Можно сказать, это мозг, управляющая система и хранилище данных в одном флаконе. Системой собирается полная структурированная информация о ходе исполнения производственных процессов предприятия в реальном времени, в том числе история, транзакции и прочие атрибуты процессов и событий. Ход исполнения жестко стандартизирован и гарантированно закрывается контуром системы.

Ядро поддерживает встроенные средства верификации кода, развёртывания, управления жизненным циклом, генерации форм и пользовательских интерфейсов, веб сервисы, механизмы реализации многопоточности и анализа данных и подготовки управленческой отчётности и верификации данных по типу гарантированная «двойная запись» в режиме реального времени. Демонстрирует высокую стойкость к неквалифицированному вмешательству, показывает рекордную производительность при тяжёлых нагрузках.

IEM-Предприятие объединяет массу разнородных объектов-подсистем в единую согласованно функционирующую систему и обеспечивает исполнение рабочих процессов. Непрерывная достоверность, согласованность и полнота базы данных гарантируется математически и содержит информацию о объектах учёта в справочниках, о происходящих событиях и процессах в документах, о регистрах и прочих механизмах. Структуры данных, их связи и взаимодействия описываются метаданными, хранящимися в той же базе в структурированном виде. Для платформ на основе ядра реализованы общие шины данных на основе единых стандартов, языков и протоколов взаимодействия, стандартизированы интерфейсы для получения данных (API).

IEM-Предприятие поддерживает общее для всех подсистем информационное поле, транзакции в реальном времени, продвинутый контроль прав доступа, самотестирование, централизованное хранение данных в облаке, автономное исполнение процессов без участия персонала, позволяющее поэтапно исключать людей из исполнения формализованных процессов вплоть до полной безлюдности, обработку больших массивов данных, цепочку блоков, машинное обучение и нейросети, интернет вещей, виртуальную и дополненную реальность.

Интеллектуальные возможности ядра очень высокие. Достаточно ввести один раз данные для многократного использования. Ядро системы автоматически исполняет сценарии обработки многоуровневых объектов неограниченной сложности (шаблоны действий) и моделирует события при воздействии внешних факторов. В процессе работы оно обучается, и чем больше процессов и шаблонов находится под управлением, тем более развитым, многофункциональным и мощным становится её «роевой» интеллект.

Ядро поддерживает как прямой ввод на внешних интерфейсах (интернет-магазины, мобильные приложения, терминалы), так и автоматический ввод с интеллектуальных сенсоров, датчиков, сканеров. Каждое изменение оперативного процесса мгновенно отражается на всех последующих: как в реальной работе производства, так и в его виртуальном отражении.

Мероприятия, в обычной компании требующие недель, месяцев, многоразовых собраний, убеждений, бюрократических переписок, преодоления саботажа на каждом этаже корпоративной иерархии, исправлений миллионов глупых косяков исполнителей, в нашей же занимают часы, дни и заключаются в несложной перенастройке параметров системы.

Программное ядро реализует следующую после интернета людей и интернета вещей, ступень социально-экономической эволюции человечества – самоорганизующуюся и самобалансирующуюся экономическую среду, предельно устойчивую к вмешательствам извне.

На базе ядра реализованы три цифровые платформы Платон, Прометей, Птолемей. Они работают в режиме реального времени, включают подсистемы и интегрированы между собой в единую сеть цепочками транзакций. Универсальный интерфейс управления приложений и микро-сервисов данных платформ на порядок уменьшает расходы на разработку новых. Расширяемая архитектура и модульная структура позволяют интегрировать в ядро платформ тысячи облачных микро-приложений, позволяющих реализовывать на их основе необходимые логические модули и операции.

Сегодня рассмотрим типовые системы управления, интегрированные в платформу Прометей. Каждая подсистема включает ядро, шаблоны действий, микро-сервисы и «облачные» приложения. «АСУТП» – низовая автоматизированная система управления технологическим процессом. Это может быть линия сварки, склад или роботизированная линия сборки машин. Маркируется кодом процесса, например, «АСУТП-Г12»

«АСУП» —вышестоящая автоматизированная система управления предприятием, контролирующая системы управления технологическими процессами. Базовое ядро дорабатывается под конкретную задачу и обозначается коротким названием процесса, к примеру, «Гипс-АСУП» – автоматизированная система управления кластерами предприятий, «АСУК-Металлургия» или «АСУК-Электроника» и, наконец, «АСУС» – автоматизированная система управления всей промышленностью «Свартальфахейма», аналог советской ОГАС.

Структуры управления корпорации интегрированы в платформы 3 «П» и включают следующие органы: ЦУР – Центр управления ресурсами, включает такие сферы как кадры, планирование, анализ и финансы, СБА – служба безопасности и аудита, ОЦУ – оперативный центр управления всеми процессами, ОЦ – обучающий центр и ЦИК – Центр исследований и конструирования. При нём функционирует управление социальной кибернетики, в чью задачу входит моделирование работы производственных процессов и цифровых платформ.

Каждый проект производства проходит детальный научный, финансовый и производственный анализ, разбивается на этапы, после чего включается в корректируемый в режиме реального времени генеральный план развития. ОЦУ отбирает и обучает координатора нижестоящих исполнителей.

Координатор проекта выстраивает отношения с научным руководителем (тот функционирует в рамках ЦИК) в вопросах подбора персонала и авторского надзора, со специалистами по организации производства логистике, и, при необходимости, маркетинга. Координатор направляет заявки в ЦУР для закупки материалов и оборудования, в ОЦУ для организации удалённых исследовательских и конструкторских работ, в ОЦ для подбора кадров.

Координатор также берёт на себя рабочую текучку и аудит рабочих процессов, отвечает, чтобы каждый член команды наиболее эффективно занимался делом. Представители центров и координаторы крупных проектов, то есть все вы, вскоре войдут в Высший Координационный Совет – орган управления, который будет непосредственно формировать и корректировать генеральный план развития корпорации, устанавливать приоритеты ключевых проектов.

При ВКС постоянно функционирует ЦПИ – Центр проектирования инфраструктуры, аналог Госплана, в задачу которого входит не столько планирование и развитие инфраструктуры убежища, сколько подбор общего технологического вектора развития. В ЦПИ работают промышленные архитекторы-футурологи, которые не здания строят не «структуру» программ конструируют, а занимаются более глобальными вещами. Инфраструктурные архитекторы тестируют и отбраковывают альтернативные технологические ветви развития целых отраслей промышленности, «оптимизируют» и «балансируют» ресурсы для этих, ещё не реализованных проектов. Рассчитывают себестоимость продукции, возможности производства в перспективе три, пять и десять лет. Выдают рекомендации ВКС и ЦИК на основе обработки огромных массивов данных. Второй отдел ЦПИ – социальные архитекторы, которые займутся проектированием общественных отношений и социальной структуры общества будущего.

Глава 6. «Флора-1».

– Приглашаю Ирину Валерьевну Стеклову из института Биофизики. Она отвечает за кластер биотехнологий и некоторые системы жизнеобеспечения всего проекта.

В центре сцены появился аватар симпатичной девушки с короткими светлыми волосами и слегка вздернутым носиком:

– Доброго дня! – девушка обладала звонким, как колокольчик, голосом. – Доклад нашей группы посвящён системам жизнеобеспечения. Через некоторое время после катастрофы условия жизни на планете будут мало отличаться от открытого космоса. Андрей Владимирович не случайно обратился к нам за помощью.

– Ирина, вы сначала расскажите о себе, а то многие не в курсе, чем вы раньше занимались.

– Да, хорошо. В семидесятые годы прошлого века в Советском Союзе при институте биофизики начал работу уникальный проект «БИОС-3», моделирующий замкнутую экосистему для длительного жизнеобеспечения человека в космических условиях. На основе наработок этого проекта, в 2005 году создан «Международный центр замкнутых экологических систем». Именно там я и работала до последнего времени.

При разработке нашей платформы жизнеобеспечения, она получила кодовое название «Флора-КАСУ», мы использовали все накопленные в проекте «БИОС-3» знания.

«Свартальфахейм» будет оборудован замкнутыми контурами жизнеобеспечения. Первый из них, замкнутый цикл кислород-углекислый газ, – появился кадр презентации, отражающий расход кислорода. – В течение суток взрослый человек потребляет пятьсот пятьдесят литров чистого кислорода. Платан около сорока метров высотой, за сутки выделяет всего девяносто литров кислорода или четырнадцать процентов от суточной потребности человека. Чтобы обеспечить потребности в кислороде только одного человека потребуется выделить под деревья пятьдесят восемь тысяч кубометров подземного пространства.

– Мы не потянет такой объём! – выкрикнули из атриума.

– Это я вам ещё потребности промышленных кластеров не озвучила, только один конвертер десять тысяч человек запросто переплюнет. Некоторые виды деревьев, например, тополь более эффективно вырабатывают кислород, – продолжила Ирина. – Но эффективней всего синтезирует кислород хлорелла. Да, да, обычная хлорелла. Тридцать литров водорослевого реактора высокой плотности, до миллиарда клеток хлореллы в кубическом сантиметре раствора, хватит для обеспечения воздухом одного человека.

 

Водорослевый реактор поглощает углекислый газ в четыреста раз эффективней деревьев! Колония клеток в реакторе стабильна. Она не демонстрирует признаки старения и обладает свойствами само-регуляции. Клетки хлореллы делятся каждые девять часов и цикл регенерации кислорода происходит за двое суток. Помимо углекислого газа хлорелла отлично утилизирует окись углерода и метан, также вырабатываемые человеком при дыхании. Производство фотобиореакторов следует организовать в порядке высшего приоритета, – Ирина посмотрела на Павла.

– Если вы имеете ввиду полный цикл, на собственной элементной базе, то не ранее, чем через два года, – пояснил Павел. – Будем постепенно локализацию наращивать: светодиодные модули, нагревательные элементы, датчики, насосы… Универсальные реакторы объёмом двадцать, сто и тысячу литров делают с возможностью объединения в стойки. Реакторы, как батарейки будут вставлять в «гнёзда» и централизованно снабжать электричеством, питательным раствором и углекислым газом. Крышки со светодиодными лентами быстросъёмные, со встроенными магнитами, что значительно упростит их обслуживание.

– Фотобиореакторы, – продолжила Ирина, – будут использоваться для покрытия потребностей в кислороде проекта «Биосфера», промышленных кластеров и части технических помещений и складов. Жилые зоны и зоотроны обеспечат кислородом фитотроны (климатические камеры для выращивания растений в закрытом объёме, в регулируемых условиях с возможностью точного регулирования потока света, температуры и влажности), кормовые реакторы хлореллы и флоки, позже я расскажу, что это такое.

«Свартальфахейм» разделят на изолированные кластеры усреднённым объёмом миллион кубических метров каждый. Помещения внутри данных кластеров соединят с залами фотобиореакторов и, или с фитотронами, вентиляционными каналами нескольких сечений, оборудованных клапанами, демпферами, фильтрами и установками обеззараживания, датчиками уровня кислорода, метана и углекислого газа.

Резервирование на случай аварий предусматривает между кластерные вентканалы, адсорберы углекислого газа и тоннели газгольдеры, где будет храниться воздух под давлением триста атмосфер и питаемые от него независимые системы подачи воздуха. Вышеперечисленные меры обеспечат возможность регулирования в каналах содержание кислорода или углекислого газа, кратное резервирование кислорода на случай любой аварии и «сглаживание» циклов потребления кислород-углекислый газ, который рассчитать точно не представляется возможным.

Второй по значению контур жизнедеятельности – круговорот питательных веществ. Для полностью замкнутого цикла, обеспечивающего одного испытателя ежедневным рационом в четыреста грамм свежих овощей и двести грамм зерна, в проекте «БИОС-3» потребовалось помещение объёмом триста двадцать кубометров, большую часть которого заняли фитотроны. Испытатели выращивали там следующие овощи карликовых сортов – сою, салат, солерос, лук, для получения растительного масла-чуфу, морковь, редис, свёклу, картофель, огурцы, щавель, капусту, укроп, лук. Все овощи были карликовых сортов. Карликовую пшеницу, имеющую укороченные стебли для уменьшения объёма несъедобной биомассы, выращивали конвейерным способом. Её урожайность достигала триста центнеров с гектара! Ничто не вечно под Луной! – Ирина вывела новые слайды. – За пятьдесят лет наука шагнула вперёд. Размещая лотки друг над другом в строго контролируемых температурных условиях, мы можем кратно повысить урожайность. Конструкция фитотрона из десяти слоёв позволит получать две тысячи тонн с гектара в год, что в шесть сот раз больше средних показателей. Использование двадцати двух часового интенсивного освещения в условиях высокой концентрации углекислого газа и бесперебойная подача питательных веществ, приводит к тому, что пшеница начинает плодоносить шесть раз в год.

Однако, мы пошли дальше и разработали концепцию автоматизированной теплицы шестого поколения, включающую «умные» датчики интернета вещей, микроконтроллеры, исполнительные механизмы, системы мониторинга и управления, которые будут работать в связке с системами автоматического полива, вентиляции и кондиционирования. В режиме реального времени такие датчики фиксируют данные о росте растений, орошении, наличии вредителей, чем сводят к минимуму применение ручного труда.

Универсальные оранжереи разной высоты и фитотроны типа «вертикальные фермы» образуют «многослойный» 3-D фитотрон с типовыми стеллажами и линейными направляющими из стали с напылением карбида вольфрама, по которым будут перемещаться портальные и вертикальные арки со специализированными насадками для сбора урожая, видеокамерами и светодиодными анализаторами биомассы, фрезами, триммерами, микроволновыми генераторами СВЧ для активации почв, блоками электроискрового уничтожения сорняков, лазерными головками, генераторами низкочастотных акустических колебаний и холодной плазмы для активации роста и стимулирования иммунитета растений.

По направляющим будут перемещаться склярные роботы с трёх и шести осевыми манипуляторами, оснащенные универсальными и специализированными, мягкими захватами для сбора плодов и ягод, секаторами, захватами для подвязки, захватами для транспортировки горшков и поддонов на склады и зоны холодной зимовки.

Позднее их дополнят каллаборативные роботы, действующие совместно с человеком и гибкие манипуляторы, типа щупальцев осьминога с искусственными мышцами, – речь Ирины сопровождалась видео фрагментами с демонстрацией работы устройств, которые убирали урожай клубники. – На направляющих помимо светодиодов будут фиксироваться рукава капельного полива и подачи углекислого газа, пчёлопроводы, датчики химического состава, освещённости, температуры, влажности и прочие. Форсунки генерации искусственного тумана, форсунки искусственного опыления. Датчики, манипуляторы и прочее оборудование полностью интегрированы в цифровую платформу «Флора», которая автоматически регулирует световой поток и спектр, температуру, влажность и прочие параметры для конкретного вида растений, стадий их развития и времени суток.

Контроллеры фитотронов генерируют оповещения и отчёты о производительности на основе данных датчиков и по видеокамерам. Данные отправляются на облачный сервер «Флоры» в режиме реального времени. Если кому интересно, подробней про данную платформу расскажут на специализированной конференции.

Ирина вывела в центр сцены новые диаграммы:

– Ознакомимся с технологиями, позволяющими значительно увеличить урожайность. Искусственный туман. Подобно природной росе он обеспечивает воздушную ирригацию почвы. Осевшая влага по свободным капиллярам уходит вглубь почвы не нарушая структуру и аэрацию среды обитания корней, что способствует её насыщению кислородом и активизирует процесс фотосинтеза. Опрыскивание происходит ионизированной водой с микроэлементными подкормками необходимыми для текущей фазы развития растений. Урожай, в среднем, увеличится в два раза, а воды, по сравнению с капельным поливом, требуется в двадцать раз меньше. Что касается оборачиваемости воды, то в фитотронах она замкнута на девяносто девять процентов.

Следующий фактор – предпосевная обработка семян. Перечислю основные операции: криогенная обработку жидким азотом, фото-активация лазером на парах меди и золота (дополнительная энергия в семенах способствует более интенсивному поглощению питательных веществ, росту и увеличению урожая), обработка семян пульсирующим электромагнитным полем сверхвысокой частоты, пневмомеханическое и электроннолучевое протравливание, низкочастотная акустическая обработка, выдержка в биологически активных растворах с добавками микроэлементов и неодима, бактериальная инокуляция и гранулирование гелями на основе карбоксиметилцеллюлозы. Оптимальная комбинации методов активации семян конкретных растений приводит не только к значительному увеличению урожайности, но и повышению резистентности к грибковым и бактериальным заболеваниям.

Изоляция растений, электромагнитная и СВЧ обработка почв, магнитная стимуляция рассады, широкое использование органических гидрогелей, органических гербицидов, фунгицидов, инсектицидов на основе нейтральных минералов, специализированных штаммов грибков, бактериальных культур, нематод, а также растительных экстрактов в сочетании с подкормками комплексными органическими удобрениями с микроэлементными добавками вызывает синергический, комплексный эффект. К примеру, органический микроэлементный комплекс на основе L-аспарагиновой кислоты в двадцать раз минимизирует внесение микроэлементов, по сравнению с неорганическими соединениями, используемые в комбикормовой промышленности, точно такой же комплекс мы планируем производить и для потребностей человека.

– Ирина, расскажите о вашей группе подробней.

– Платформу «Флора» развивает две тысячи человек. К сожалению, в перспективе требуется кратно увеличить численность исследователей. Андрей Владимирович, очень большой объём исследований, не справляемся…

– Вы то сами чем занимаетесь? – спросил Дмитрий.

– Курирую направление микроорганизмов.

– Я бы послушал.

– Расскажите, лишним не будет, – согласился я с другом.

– Бактерии играют очень важную роль в росте и развитии растений, – увлечённо стала рассказывать Ирина. – Учёные только сейчас стали понимать их важность. Почвенные бактерии, попадая на корни растений, синтезируют биологически активные вещества, способные влиять на их физиологическое состояние. Бактерии активно взаимодействуют с растениями, стимулируют их рост и развитие, поднимают иммунитет и способствуют корневой системе, улучшая её поглощающую способность.

В наших лабораториях разрабатываются биопрепараты на основе микроорганизмов, способные трансформировать труднорастворимые органические и минеральные фосфаты в легкорастворимые и доступные для растений формы. Например, эффективность всасывания железо- и фосфорсодержащих удобрений на основе гуминовых веществ увеличивается при внесении в почву аморфных наночастиц кварца, покрытых бактериальной биоплёнкой, содержащей специальные грибковые и бактериальные штаммы. При добавке этих частиц, содержание белка в зерне увеличивается до пятнадцати процентов, а глютена до тридцати двух. Бактерии не только повышают урожай, они великолепно защищают растения.

– Приведите, пожалуйста, примеры.

– Что ж, биофунгицид на основе штаммов бактерии Bacillus subtilis подавляет жизненную активность грибков, повышает природный иммунитет растений и стимулирует их развитие. Штамм Brevibacillus laterosporus синтезирует биологически активные соединения для борьбы с микроскопическими водорослями и грибками, поражающими растения. Все эти бактерии не токсичны для животных, растут на дешёвых питательных средах и, главное, не требуют специальных условий для культивирования.

Ещё один пример, растения, обработанные препаратом на основе карбоксиметилированной органической целлюлозы, включающей симбиотические бактерии Risobium japonicum, усваивают азот в два раза продуктивней, по сравнению с контрольной группой, а численность болезнетворных грибков в их корневой системе снижается в три раза. Вот вроде и всё, позвольте, я продолжу выступление по плану?

– Конечно, Ирина.

– Следующий ключевой фактор для роста растений – чистая вода. По плану ЦИК для очистки воды для фито- и зоотронов будут применять установку комбинированной кавитационно-вихревой обработки воды профессора Константинова. Профессор, думаю вам есть, что сказать.

– Кхм, – Антон Игоревич встал, потер руки, – кавитационная обработка обеспечивает полное обеззараживание воды от вирусов, бактерий и прочих патогенов. За счёт энергии схлопывания кавитационных каверн происходит частичное разрушение сетки водородных связей в молекуле воды, в жидкости генерируется значительное число мелких кластеров, происходит интенсивная диссоциация молекул воды на высокоактивные гидрид ионы H+ и ОН- с дальнейшей рекомбинацией и образованием из них перекиси водорода и кислорода. В результате изменяются физико-химические свойства воды, возрастает электропроводность и поверхностное натяжение, спектральные и люминесцентные характеристики. Увеличивается растворимость газов. Соли выпадают в осадок.

– Благодарю! – сказал я, когда профессор замолчал. – От себя добавлю, по расчётам ЦИК ЭГ обработка воды обходится в два раза дешевле ультрафиолетовой, в три – хлорирования и в десять – озонирования. Биологические и органолептические качества обработанной таким образом воды существенно выше аналогов. На этих же установках одновременно с обеззараживанием возможно образование азотных удобрений. Они берутся в прямом смысле из воздуха, растворного в воде. Один киловатт*час мощности позволяет произвести десять литров концентрата, из которого можно приготовить тонну жидких азотно-фосфорных удобрений.

 

– И почему же, профессор, такие замечательные устройства ещё не сделали вас миллионером?

– А потому, молодой человек, – Антон Игоревич повернулся к Тимуру, – есть такое понятие, как совокупная стоимость внедрения и инерция мышления. Разработка силовой электроники…

– Профессор, прошу вас, – прервал я его, – давайте обсудим эти вопросы после конференции. У нас не так много времени.

– Следующий фактор успеха – почвы, – Ирина, дождавшись пока все замолчат, продолжила свой доклад. – В проекте «БИОС-3» широко использовалась гидропоника, но мы решили уйти от неё, так как она имеет массу минусов.

– Какие? На гидропонике же полно теплиц работает!

– Это не значит, что у гидропоники нет недостатков. Если по верхушкам пробежаться, – аватар Ирины задумался, приложив руку к подбородку, по всей видимости, поставила на заранее анимированную «паузу», а сама искала информацию. Через некоторое время она очнулась и заговорила, – до шестидесяти процентов питательного раствора не используется и буквально сливается в канализацию, в субстрате заводятся плесневые грибки, одноклеточные водоросли и прочая болезнетворная микрофлора. Периодически его приходится промывать и обеззараживать с помощью не самой полезной для здоровья химии. Сотни метров трубопроводов требуют мощных насосов для перекачки питательного раствора, нередки и аварии из-за гидроудара. Гидропоника требует сложного дорогостоящего оборудования и постоянную балансировку питательных растворов с макро- и микроэлементами и квалифицированного обслуживания. Из-за небольшой оплошности с дозировкой, растения в теплице могут погибнуть за десять, двенадцать часов, а иногда и быстрей. Растворы необходимо обновлять, постоянно проверять их рН и химический состав. Передозировка удобрений – бич гидропоники, приводит к накоплению нитратов в плодах растений и химическим ожогам. Безвкусные, резиновые помидоры и клубника это оно, следствие неверной дозировки. Достаточно?

– Ирина, вы нам про почвы рассказывали. Давайте, к ним и вернёмся.

– Конечно-конечно. В проекте предусмотрено использование всех типов почв. Также мы будем использовать гидропонику, но в отличной от современных систем конфигурации. Мы планируем производить не громоздкие системы, а компактные необслуживаемые гидропонные модули, как автономные, так и поддерживаемые цифровой платформой «Флора». В подобном гидромодуле через контроллеры программируются: оптимальный температурный режим для конкретного растения, температура питательного раствора, влажность воздуха и щелочной баланс рН, коррекция которого происходит путём впрыскивания в воду известкового молочка.

Загрузив необходимый профиль – рассада, вегетация, ночь, день специальный гидромодуль начнёт автоматически поддерживать данный режим. Для анализа и концентрации питательного раствора в модуль встроен кондуктометр, который позволяет изменять состав раствора в зависимости от стадии вегетации. Обеззараживание питательного раствора, а также его насыщение азотом, кислородом и углекислым газом, производится автоматически, благодаря чему возможно снимать до двенадцати урожаев в год.

Гидропонный модуль обслуживается манипуляторами и поддерживает четыре операции – высадку пророщенных семян, перестановку кассет из зоны подращивания рассады в модуль прищипывания верхушек растений и сбор урожая. Гидропонику мы станем применять в аква-культуре, в системах вертикального озеленения, для роста моховых и травяных стенок.

При выращивании овощей и фруктов основной упор будем делать на относительно новую технологию – ионотопонику. Она создана отечественными исследователями в рамках разработки искусственной почвы при моделировании полётов на Марс и применялась для выращивания растений на атомных субмаринах и полярных станциях.

Принцип ионного обмена между субстратом и корнями растений является основой данной технологии. Иониты отдают полезные вещества, а впитывают, наоборот, метаболиты, то есть продукты выделения растений. Субстрат состоит из смеси двух типов синтетических ионообменных смол: катионита и анионита, растворённых в искусственном материале сделанным на основе цеолита. Иониты очень прочные, химически стойкие, не разлагаются при воздействии кислорода и света. Содержат все необходимые для питания растений макро- и микроэлементы. Этих веществ в субстрате в шестьдесят раз больше, чем в самом плодородном грунте!

Скорость обмена корневых выделений с ионами, сконцентрированными в субстрате, напрямую зависит от ряда сложных биохимических процессов, микроклимата, влажности, температуры, вентиляции, степени освещенности и фило-онтогенеза (процесс индивидуального развития организма от рождения до смерти). Субстрат удерживает ионы калия, кальция, магния железа и ряда других соединений, постепенно отдавая их корневым волоскам растений в обмен на продукты распада. В субстрате представлены как микроэлементы, так и макроэлементы, в частности базовые циклы питания азот-фосфор-калий магний-кальций-сера. Передозировка, недокармливание и химические ожоги исключены.

Субстрат как бы выступает в роли опытного «диетолога», под присмотром которого растения получают правильное питание. Достаточно добавить два-три процента субстрата к песку, отсеву, торфу и растению хватит этого на три года. В качестве наполнителей можно использовать гранулированные естественные материалы – торф, чернозём, опилки, пески, сапропель и искусственные – гели, керамзит и вспученный кварцит шарообразной формы.

Плоды растений, выросших на ионитной «почве» в сочетании с бактериальной подкормкой, по вкусу не отличаются от выращенных в естественном грунте, не требуют частых перевалок и пересадок. В стерильной среде создаются благоприятные условия для их хорошего роста и развития, что сводит борьбу с вредителями и болезнями к минимуму.

К сожалению, сухие цеолитовые субстраты довольно дороги и на первых порах будут использоваться ограниченно. Однако существует более дешёвый тип ионитопоники, который предусматривает использование волоконного наполнителя из кварцевого войлока. Обмен между ионами субстрата и выделенными корнями протекает в водной среде путём периодического подтопления лотков снизу.

– Ну а если в двух словах, какие основные преимущества у ионопоники? – спросили Ирину

– Растения, выращенные на волоконных субстратах, в три раза дешевле своих аналогов на гидропонике. Такие агротехнические приёмы как уход, прополка, рыхление, подкормка здесь не нужны.

– Благодарю, вот бы сразу так объяснили!

– Заканчиваю с почвами. Всё, что я рассказала выше – будущее, мы не сможем произвести необходимое количество субстратов и растворов. Используя чернозёмы, суглинки, супеси и торф в качестве основы будем делать искусственные смеси с глинами, цеолитами, нанокварцем и прочими минералами, добываемыми в пространстве «Свартальфахейма» – агровермулитом, доломитом, гипсом, лангбейнитом. Последний представляет из себя уникальное природное соединение, содержащее все три необходимых растениям элемента питания – калий, магний и серу в легкодоступной для них форме. Семьдесят два типа почвосмесей будут удобряться гумусом и биоуглём, о них стоит упомянуть отдельно.

Биоуголь, он же красный уголь, он же торрефикат – продукт термического распада растительных материалов при температуре не более ста восьмедесяти градусов. Уголь поддерживает рыхлость почвы, улучшает её пористость и проницаемость, позволяя атмосферному воздуху и лучам солнца глубже проникать к корням растений. Красный уголь угнетает развитие насекомых-вредителей и отлично справляется с сорняками, затрудняя прорастание их семян. Гранулированный торрефикат возможно производить из любого органического продукта (отходы деревообработки, сельскохозяйственные отходы, иловые осадки, торф) методом гидротермальной карбонизации под давлением двадцать пять атмосфер. Полученный биоуголь можно добавлять к кормам, обогащать почвенные смеси для повышения эффективности удобрений и увеличения влагоёмкости и рН, и увеличения микробиологического разнообразия.