Za darmo

Моделирование канала коротковолновой радиосвязи

Tekst
Oznacz jako przeczytane
Czcionka:Mniejsze АаWiększe Aa

Откуда получаем параметры для формирования случайной величины с огибающей, распределенной по полунормальному закону:


Заключение

Для моделирования радиоканала, сформированные таким образом с помощью ПЭВМ сигнал и помехи следует подать на вход радиоприемного устройства или его имитатора, при этом отношение с/ш на входе радиоприемного устройства для каждого вида помехи должно соответствовать вычисленному значению.

Программа расчета параметров для моделирования КВ радиоканала KVkanal приведена в приложении А, инструкция по работе с программой KVkanal приведена в приложении Б.


Литература

Левин Б.Р. Теоретические основы статистической радиотехники. Издательство «Советское радио», М-1969.

Надененко С.И. Антенны Государственное издательство литературы по вопросам связи и радио, М-1959.

Рекомендация МСЭ-R Р.372-9 Радиошум, 2007.

Вентцель Е.С. Теория вероятностей. Издательство «Наука», М-1969.

Википедия (на английском языке), Half-normal distribution.

Приложение А
Программа

KVkanal

(Расчет параметров для моделирования КВ радиоканала)

Исходный код программы


clc; clear; close all;

% расчет отношения сигнал/шум на входе приемника в КВ диапазоне

% ввод исходных данных

D=2600; % км – дальность связи

f=11.75; % МГц – рабочая частота

Ec=1.28; % мкВ/м – напряженность поля сигнала в точке приема

a=7.1; % град. – угол прихода сигнала

A=2; % применяемая антенна: A=1 – ближе к полуволновому вибратору; A=2 – ближе к волновому вибратору.

Tp=300; % град. К – абсолютная температура входных цепей приемника

Ta=40; % град. К – эффективная температура антенны

df=3000; % Гц – полоса пропускания приемника (тракта ПЧ)

dU=1; % мкВ – чувствительность приемника

Fama=45; % дБ – медианное значение коэффициента атмосферного шума

dFama=6; % дБ – стандартное отклонение Fama

A0=3; % дБ – превышение напряжения огибающей над медианным значением

M=1; % категория среды в месте приема: 1 – жилой район, 2 – сельская местность.

Ra=300; % Ом – волновое сопротивление антенны

Rf=200; % Ом – волновое сопротивление фидера

% решение задачи

k=1.38e-23; % дж/град. – постоянная Больцмана

l=300/f; % длина волны излучения

a1=a*pi/180; % рад. – угол прихода сигнала

if A==1

F=2*sin(pi*sin(a1)); % функция направленности для полуволновой антенны ВГД в вертикальной плоскости

Fmax=2; % максимальное значение диаграммы направленности

Kp=8; % коэффициент пересчета мощности помехи из эквивалентной антенны в реальную

Ap=' (антенна полуволновой вибратор) ';

else

F=4*sin(pi*sin(a1)); % функция направленности для волновой антенны ВГД в вертикальной плоскости

Fmax=4; % максимальное значение диаграммы направленности

Kp=80; % коэффициент пересчета мощности помехи из эквивалентной антенны в реальную

Ap=' (антенна волновой вибратор) ';

end

hd=l*Fmax/pi; % действующая высота симметричного вибратора

hde=l/pi; % действующая высота эквивалентной антенны

% расчет мощности сигнала

Ea=Ec*hd*F; % мкВ – эдс сигнала, наводимая в антенне

U=Ea*Rf/(Ra+Rf); % мкВ – амплитуда входного сигнала

P=U^2/Rf; % мкВт – мощность входного сигнала

% тепловой шум

Pha=4e6*k*Ta*df; % мкВт – мощность шума антенны

Php=4e6*k*Tp*df; % мкВт – мощность шума входных цепей приемника

Ph=Pha+Php; % мкВт – мощность теплового шума на входе приемника

% эфирный шум (атмосферные помехи)

Faa=Fama+dFama; % дБ – коэффициент атмосферного шума

Epd=Faa+20*log10(f)+10*log10(df)-99; % дБ/мкВ/м – напряженность поля помехи в точке приема для заданного df

Epm=10^(Epd/20); % мкВ/м – медианное изначение напряженности поля помехи в точке приема

ka=10^(A0/20); % коэффициент

Ep=Epm*(1+ka); % действующее изначение напряженности поля помехи в точке приема

Epa=Ep*hde; % мкВ – эдс помехи, наводимая в эквивалентной антенне

Upa=Kp^(1/2)*Epa*Rf/(Ra+Rf); % мкВ – амплитуда атмосферной помехи на выходе реальной антенны

Upam=Upa/(1+ka); % медианное изначение напряжения атмосферной помехи на выходе реальной антенны

siga=Upam*ka; % стандартное отклонение напряжения атмосферной помехи на выходе реальной антенны от медианного значения

sigax=2*siga; % стандартное отклонение моделируемого процесса с нормальным распределением

moax=4*(Upam-siga/(2*pi)^(1/2)); % мат. ожидание моделируемого процесса

Pap=Upa^2/Rf; % мкВт – мощность атмосферной помехи

Pp=(Ph+Pap); % мкВт – мощность атмосферной и тепловой помех на входе приемника

h02a=P/Pp; % раз отношение с/ш на входе приемника

Pad=10*log10(Pp/P); % дБ требуемый уровень помехи относительно сигнала для имитации канала связи

L=D/cos(a1); % км – длина пути луча

t=L/300; % сек. – время прохождения пути

disp([' Входной сигнал', Ap]);

disp(['U=', num2str(U),' мкВ (амплитуда входного сигнала)']);

disp(['P=', num2str(P),' мкВт (мощность входного сигнала)']);

disp(['Ph=', num2str(Ph),' мкВт (мощность тепловой помехи)']);

disp(['L=', num2str(L),' км (длина пути, пройденного лучем)']);

disp(['t=', num2str(t),' мсек. (время прохождения пути)']);

disp(' Атмосферная помеха. Логнормальное распределение.');

disp(['Pap=', num2str(Pap),' мкВт (мощность атмосферной помехи)']);

disp(['h02a=', num2str(h02a),' раз (отношение с/ш)']);

if U<dU

disp([' Амплитуда входного сигнала меньше чувствительности приемника']);

else

disp(['sigax=', num2str(sigax),' (требуемое стандартное отклонение моделируемого процесса)']);

disp(['moax=', num2str(moax),' (требуемое мат. ожидание моделируемого процесса)']);

disp(['Pad=', num2str(Pad),' дБ (требуемая мощность атмосферной помехи относительно мощности входного сигнала для имитации канала связи)']);

end

% галактический шум

if f>10 || f==10

Famg=52.25-10.296*log(f); % дБ – медианное значение коэффициента галактического шума

dFamg=1.56;

Fag=Famg+1.56; % дБ – коэффициент галактического шума

Epgd=Fag+20*log10(f)+10*log10(df)-99; % дБ/мкВ/м – напряженность поля помехи в точке приема для заданного df

Epgm=Famg+20*log10(f)+10*log10(df)-99; % дБ/мкВ/м – медианное значение напряженности поля помехи в точке приема для заданного df

dEpg=dFamg+20*log10(f)+10*log10(df)-99; % дБ/мкВ/м – стандортное отклонение от медианного значения напряженности поля помехи в точке приема для заданного df

kg=10^(dEpg/20)/10^(Epgm/20); % коэффициент

Epg=10^(Epgd/20); % мкВ/м – напряженность поля помехи в точке приема

Epga=Epg*hde; % мкВ – эдс помехи, наводимая в эквивалентной антенне

Upg=Kp^(1/2)*Epga*Rf/(Ra+Rf); % мкВ – амплитуда галактической помехи на выходе реальной антенны

Ppg=Upg^2/Rf; % мкВт – мощность галактической помехи

Upgm=Upg/(1+kg); % медианное изначение напряжения галактической помехи на выходе реальной антенны

sigg=Upgm*kg; % стандартное отклонение напряжения галактической помехи на выходе реальной антенны от медианного значения

siggx=2*sigg; % стандартное отклонение моделируемого процесса с нормальным распределением

mogx=4*(Upgm-sigg/(2*pi)^(1/2)); % мат. ожидание моделируемого процесса

h02g=P/Ppg; % раз отношение с/ш на входе приемника

Pgd=10*log(1/h02g); % дБ требуемый уровень помехи относительно сигнала для имитации канала связи

disp(' Галактический шум. Нормальное распределение.');

disp(['Ppg=', num2str(Ppg),' мкВт (мощность галактической помехи)']);

disp(['h02g=', num2str(h02g),' раз (отношение с/ш)']);

disp(['siggx=', num2str(siggx),' (требуемое стандартное отклонение моделируемого процесса)']);

disp(['mogx=', num2str(mogx),' (требуемое мат. ожидание моделируемого процесса)']);

disp(['Pgd=', num2str(Pgd),' дБ (требуемая мощность галактической помехи относительно мощности входного сигнала для имитации канала связи)']);

else

Ppg=0;

Famg=0;

dFamg=0;

disp(['Ppg=', num2str(Ppg),' ( галактическая помеха отсутствует)']);

end

% промышленный шум

if M==1

Famp=71.52-11.987*log(f); % дБ – медианное значение коэффициента промышленного шума для жилого района

dFamp=8.18; % дБ – стандартное отклонение коэффициента промышленного шума для жилого района

Fap=Famp+8.18; % дБ – коэффициент промышленного шума для жилого района

Mp=' (жилой район) ';

elseif M==2

Famp=66.19-11.987*log(f); % дБ – медианное значение коэффициента промышленного шума для сельской местности

dFamp=7.27; % дБ – стандартное отклонение коэффициента промышленного шума для сельской местности

Fap=Famp+7.27; % дБ – коэффициент промышленного шума для сельской местности

Mp=' (сельская местность) ';

end

Eppd=Fap+20*log10(f)+10*log10(df)-99; % дБ/мкВ/м – напряженность поля помехи в точке приема для заданного df

Eppm=Famp+20*log10(f)+10*log10(df)-99; % дБ/мкВ/м – медианное значение напряженности поля помехи в точке приема для заданного df

dEpp=dFamp+20*log10(f)+10*log10(df)-99; % дБ/мкВ/м – стандортное отклонение от медианного значения напряженности поля помехи в точке приема для заданного df

kp=10^(dEpp/20)/10^(Eppm/20); % коэффициент

Epp=10^(Eppd/20); % мкВ/м – напряженность поля помехи в точке приема

Eppa=Epp*hde; % мкВ – эдс помехи, наводимая в эквивалентной антенне

Upp=Kp^(1/2)*Eppa*Rf/(Ra+Rf); % мкВ – амплитуда промышленной помехи на выходе реальной антенны

Ppp=Upp^2/Rf; % мкВт – мощность промышленной помехи