Люди на Луне

Tekst
Przeczytaj fragment
Oznacz jako przeczytane
Czcionka:Mniejsze АаWiększe Aa

Как же увидеть следы пребывания людей на Луне?

КРАТКИЙ ОТВЕТ: Можно найти результаты съемки Луны космическими аппаратами разных стран. Или подождать: новых луноходов, возможности запустить к Луне свой спутник с достаточно мощной камерой или начала продажи билетов на туристические полеты до Луны.

Если даже большой телескоп с Земли не может показать нам лунную поверхность достаточно четко, то можно сделать его меньше, но разместить ближе к объекту наблюдения. После программы Apollo к Луне запускались космические аппараты Японии, США, Европы, Китая, Индии, Израиля. Многие из них несли на борту фотокамеры или телескопы для наблюдения за поверхностью.

Непосредственно следы людей и луноходов, лунные модули и оборудование сумел рассмотреть только один аппарат – американский LRO. Японская и индийская автоматические станции хотя и не имели достаточной разрешающей способности своих камер, но смогли увидеть признаки лунных посадок – пятна грунта, разбросанного лунными модулями при посадке и взлете, тень лунного модуля, наиболее вытоптанные астронавтами участки поверхности и др.

Когда-нибудь в будущем появится возможность и самостоятельно слетать на окололунную орбиту. В XXI веке как минимум две космические компании предлагали туристический полет до Луны и обратно, без посадки. Это российская ракетно-космическая корпорация «Энергия» и американская компания SpaceX. При цене билета от $70 до $120 млн можно слетать и посмотреть на Луну самому. Только, чтобы увидеть следы, потребуется хороший телескоп, так как даже с орбиты расстояние до поверхности – несколько десятков километров. Посадка туристического корабля будет стоить намного дороже, и пока никто не готов обеспечить такой полет.

Хотя не обязательно тратить $120 млн на туристический полет, когда можно запустить туда спутник или луноход. Это будет дешевле, хотя и ненамного.

В 2015 году группа российских энтузиастов и молодых инженеров космической отрасли объявила о проекте создания микроспутника, который сможет добраться до Луны и с орбиты рассмотреть следы. Они собрали 1,5 млн рублей на разработку спутника при помощи краудфандинга, но, чтобы создать настоящий космический аппарат, им потребуется в тысячу раз больше, и пока инвестора не нашлось, поэтому нам придется ждать их старта.

В 2007 году компания Google объявила конкурс Google Lunar X Prise, по условиям победитель получал $25 млн за успешную доставку на Луну небольшого лунохода, который пройдет 500 м и передаст не менее 500 мегабайт данных на Землю. Десятки команд со всего мира решили участвовать в гонке, финал ожидался в 2015 году, но в 2018 году компания Google вышла из конкурса, не дождавшись финалистов. Техническая задача оказалась сложнее, чем многие ожидали, и дороже, чем обещанный приз. Лишь одна команда – израильская – довела проект до запуска, но их космический аппарат Beresheet при посадке разбился о поверхность Луны.

Тем не менее несколько команд продолжили свою деятельность и после конкурса. Немецкая команда PTScientist разрабатывает посадочную платформу и луноход и планирует зарабатывать на доставке грузов на Луну. Целью первого запуска они выбрали место посадки одного из Apollo. Луноход должен высадиться в районе прилунения Apollo 17, подойти на расстояние 100 м к лунному роверу LRV, на котором катались астронавты, и с расстояния 200 м взглянуть на оставшуюся нижнюю ступень посадочного модуля. NASA попросило не подходить ближе, чтобы сохранить неприкосновенность исторических следов Харрисона Шмитта и Юджина Сернана.

Что можно увидеть на Луне в любительский телескоп?

КРАТКИЙ ОТВЕТ: В любительский телескоп на Луне можно рассмотреть много интересного, но не следы людей.

Автор главы – астроном-любитель, инженер-робототехник, выпускник факультета прикладной информатики Кубанского государственного университета Артем Зубко

Прогуливаясь морозным зимним утром или жарким летним вечером, мы часто видим бледно-желтый или пепельно- серый диск того, что называют Луной. Нам про нее говорят с детства, показывают фотографии и рисунки в школьных учебниках, иногда мы видим ее по телевизору. Пожалуй, каждый знает, что это древний спутник Земли, что он обращается вокруг нашей планеты и что к нему периодически летают искусственные спутники и спускаемые аппараты.

Если остановиться и немного присмотреться к полной Луне, то можно заметить на ней светлые и темные области. Можно найти в интернете карту и попытаться распознать в этих пятнах Море Дождей ближе к северу, Моря Ясности и Спокойствия возле экватора, Море Кризисов на востоке. То яркое пятно на юге, от которого расходятся белесые полосы, сойдет за кратер Тихо, но ничего определенного сказать нельзя: все эти очертания кажутся призрачными и расплываются в глазах. Едва ли вид Луны на небосклоне может казаться манящим и загадочным, ведь она с нами на протяжении всей жизни и кажется чем-то вполне обыденным.

Однако уже при наблюдении в телескоп с диаметром объектива около 70 мм Луна способна перевернуть мировоззрение наблюдателя. Поставив окуляр с фокусным расстоянием от 20 мм и дав глазам привыкнуть к яркому желтоватому свету, мы видим то, что заставляет затаить дыхание. С этого момента Луна, казавшаяся плоским светящимся диском, обретает объем. Взгляд цепляется за многочисленные кратеры, на дно которых ложится тень от валов и центральных пиков. Горные цепи вблизи линии терминатора, отделяющей неосвещенную часть космического тела от освещенной, также отбрасывают длинные тени на поверхность, позволяя почувствовать их высоту и рельеф. Теперь можно приступать к детальному изучению лунной поверхности!

Масштаб деталей, которые можно различить на диске нашего спутника, прямо зависит от апертуры (диаметра объектива) и фокусного расстояния телескопа, с помощью которого проводятся наблюдения. Апертура влияет на разрешающую способность, или резкость телескопа. Зная фокусное расстояние телескопа и применяемого окуляра, можно вычислить его увеличение, разделив фокусное расстояние телескопа на фокусное расстояние окуляра. Таким образом, немаловажно и дополнительное оборудование: окуляры с различными фокусными расстояниями и линзы Барлоу, кратно увеличивающие фокусное расстояние телескопа. Впрочем, даже большая апертура и фокусное расстояние будут бесполезны при плохих атмосферных условиях, когда уровень турбулентности в различных слоях атмосферы столь высок, что делает изображение наблюдаемого небесного тела размытым, скрывая мелкие детали.

ЧТО ВИДНО В ТЕЛЕСКОПЫ С МАЛЫМ ДИАМЕТРОМ ОБЪЕКТИВА (70–100 ММ)?

Телескопы с низким увеличением хорошо подходят для обзорного изучения наиболее крупных образований на Луне. Так, наблюдателю становятся доступны все моря и заливы, из числа которых сразу бросается в глаза Залив Радуги шириной около 160 км в Море Дождей.

Стоит отметить, что это образование на самом деле является древним разрушенным кратером. Когда в 1651 году итальянский астроном Джованни Риччоли наблюдал эту область Луны, она напомнила ему залив, коих на Земле великое множество. Никакого сходства с кратером в те времена не прослеживалось, так как отсутствовал центральный пик и южная часть вала.

Для объяснения такого странного строения кратера было выдвинуто много гипотез, но наиболее правдоподобной считается следующая: во время формирования Моря Дождей потоки базальтовой лавы хлынули через северную часть вала кратера, некогда представлявшего нынешний Залив Радуги. Из-за перепадов высот поверхности вся лава заполнила дно кратера и затопила его южную границу, погребя под собой находившийся там вал.

Женский образ на западной окраине Залива Радуги


Интересная особенность, которую можно рассмотреть в Заливе Радуги, – это женская голова. Если присмотреться к Мысу Гераклида, то можно заметить, что его очертания напоминают женский профиль. Конечно, никто не рисовал на лунном грунте гигантские портреты. Игра теней, падающих от гор и холмов мыса, отлично демонстрирует феномен, называющийся парейдолией. (Парейдолия – разновидность зрительных иллюзий, когда иллюзорный образ формируется на основе деталей реального объекта.) Впервые подобная визуальная интерпретация появилась на карте Луны, составленной известным астрономом Жаном Домиником Кассини в 1679 году. Считается, что он изобразил на карте настоящую женщину, а именно свою жену.


Залив Радуги. Артем Зубко


Также относительно недалеко от Залива Радуги был доставлен «Луноход-1» – первый в мире планетоход, успешно работавший на поверхности другого небесного тела.

Телескоп даже с низким увеличением позволяет заметить особенности лунной поверхности. Например, разные лунные «водоемы» отличаются по цвету. Так, Море Спокойствия выглядит темнее, чем Море Ясности, из-за базальтовых пород с повышенным содержанием оксида титана. Окружающая их гористая местность в разы ярче, так как сложена не из застывшей базальтовой лавы, а более светлого анортозита.


Кратер Тихо. Артем Зубко


Среди всего этого селенологического многообразия наблюдатель сразу увидит образование, заметное даже невооруженным глазом, – кратер Тихо. Это один из молодых крупных ударных кратеров диаметром 85 км. Он окружен системой ярких лучей, простирающихся на тысячи километров по лунному диску. Они образовались при ударе, сформировавшем кратер, из выброшенных пород. Как раз по причине его молодости эти лучи еще не стерлись, и состояние лучей помогает определять примерный возраст кратеров при наблюдениях наряду с четкими очертаниями окружающего кратер вала.

 

Кратер Коперник. Артем Зубко


Также лучевой системой может похвастаться кратер Коперник, расположенный в восточной части Океана Бурь. Яркий, с четкой структурой и достаточно молодой, он легко доступен для наблюдателя. Можно даже постараться рассмотреть центральные пики внутри чаши кратера.

По соседству с Морем Нектара располагаются кратеры Кирилл и Теофил. Теофил является крупным – диаметр почти 100 км – кратером с большим тройным центральным пиком высотой 2 км. Образовался не раньше чем 1,1 млрд лет назад. Дно сравнительно ровное. Вал Теофила имеет широкую внутреннюю поверхность с признаками оползней. Примечательно, что во время миссии Apollo 16 (1972) были собраны образцы базальта, предположительно выброшенного из кратера Теофил в момент его образования.

Кратер, в который частично вторгается Теофил, именуется Кирилл. Это близкий по размерам ударный кратер. Его неравномерная структура вызвана разрушением стенок и заполнением выброшенными породами при образовании кратера Теофил. К северо-востоку от его центра возвышаются три округлых горы высотой по 3 км.


Кратеры Кирилл и Теофил. Артем Зубко


Черным кругляшком на диске Луны виден 100-километровый кратер Платон на северо-восточной границе Моря Дождей, залитого базальтовой лавой. С востока оно ограничено лунными Альпами. Видна даже Альпийская Долина, рассекающая горы темной полосой. К этому региону мы еще вернемся.

ЧТО ВИДНО В ТЕЛЕСКОПЫ СО СРЕДНИМ ДИАМЕТРОМ ОБЪЕКТИВА (120–180 ММ)?

Телескопы с объективами такого размера позволяют более детально изучить лунный ландшафт, разглядеть мелкие подробности крупных селенографических образований. Стоит отметить, что с этого момента для наблюдателя большую роль играет локальное состояние атмосферы в месте проведения наблюдений. Это состояние называется астроклиматом, а соответствующее ему качество изображения – астрономической видимостью, или на сленге любителей астрономии – сиингом (от англ. seeing). Астрономическая видимость зависит от многих факторов, таких как засветка неба яркими искусственными источниками света, турбулентность атмосферы, ее загрязненность, высота наблюдаемого объекта над линией горизонта.

В случае наблюдения Луны наибольшие искажения вносят турбулентные слои воздуха – они искажают и размывают изображение, которое наблюдатель видит в окуляре телескопа. Чем больше увеличение, применяемое при наблюдениях, тем сильнее проявляются эффекты плохой астрономической видимости и тем сложнее разглядеть мелкие детали. Для телескопов такого калибра будем считать, что рабочей связкой оптических принадлежностей является линза Барлоу с двукратным (либо трехкратным) увеличением и окуляр с фокусным расстоянием не менее 15 мм. Подразумевается, что в момент наблюдений астрономическая видимость хорошая.

Вновь взглянем на уже рассмотренные объекты. Например, кратер Коперник предстает в новом свете: вал кратера имеет террасовидную структуру, террасы разделены глубокими расщелинами, а сам он имеет форму не окружности, а скорее многоугольника, состоящего из 12 более или менее прямолинейных участков. В центре чаши находится комплекс центральных пиков, северная часть дна более гладкая, чем южная.

Кратер Платон с Альпами и Горами Тенерифе можно по праву считать одними из самых красивых и интересных объектов для наблюдения.

Горы Тенерифе располагаются юго-западнее кратера Платон и представляют собой группу изолированных пиков в Море Дождей. Высота самого высокого пика составляет 2400 м. Такое, казалось бы, странное положение внутри моря обусловлено тем, что они являются частью внутреннего вала кратера, образованного ударом космического тела, давшего начало формированию Моря Дождей. В дальнейшем бассейн Моря Дождей заполнился базальтовой лавой, которая затопила кратер, оставив на поверхности лишь эти одинокие отдельные части внутреннего вала. Западнее Гор Тенерифе расположился Прямой Хребет, имеющий ту же природу происхождения.


Кратер Платон и Горы Тенерифе. Артем Зубко


Вокруг кратера Платон можно рассмотреть систему протяженных борозд, именуемых Платон I (севернее кратера), Платон II (южнее кратера) и Платон III (юго-западнее кратера).

Пристального внимания заслуживает Альпийская Долина – так назвал ее первооткрыватель, итальянский священник и астроном Франческо Бьянкини в далеком 1727 году. С тех пор эта лунная достопримечательность приковывает к себе внимание не только ученых, но и любителей астрономии. Благодаря своим размерам (длина 160 км, ширина средней части 10 км) Альпийская Долина – один их самых легких для наблюдения лунных объектов. При удачном освещении этот разлом можно рассмотреть даже в 50-миллиметровый бинокль.

Судя по образцам, привезенным кораблем Apollo 15 (1971), горная гряда образовалась почти 4 млрд лет назад (спустя около полумиллиарда лет после появления Луны), когда большое космическое тело обрушилось на поверхность и от этого удара образовалась гигантская впадина под названием Море Дождей.


Альпийская Долина. Артем Зубко


Около миллиарда лет спустя космический обломок упал на поверхность Луны и создал кратер Платон диаметром 100 км (самый большой кратер на снимках). Платон также наполнен расплавленным веществом, которое оставило его дно относительно плоским.

Альпийская Долина, вероятно, образовалась из-за сдвига части лунной коры от удара, породившего Море Дождей. Долина впоследствии заполнилась вулканическим веществом.


Лунные Альпы. Артем Зубко


Особенностью дна долины является борозда шириной не более 1 км и протяженностью 140 км. Первооткрыватель этой борозды, известный наблюдатель Уильям Генри Пикеринг, впервые описал ее более ста лет назад, в 1891 году. Зная о труднодоступности борозды для наблюдения, Пикеринг нередко использовал ее как тест на качество изображения.

Переместимся южнее, в восточную часть Моря Облаков. Когда фаза Луны составляет примерно 8 дней после новолуния, наблюдатель без труда отыщет Прямую Стену – самый известный тектонический разлом на поверхности Луны. Выглядит он как длинная и тонкая линия, простирающаяся с севера на юг почти на 120 км. Можно заметить, что не такая уж «стена» и прямая: на обоих ее концах имеются сегменты, расположенные под углом. Да и отвесной ее назвать нельзя, так как наклон склона составляет примерно 21 градус.

В южной оконечности Прямой Стены находится группа холмов с названием Оленьи Рога, которые являются остатками кратера диаметром 25 км, затопленного и разрушенного лавой с западной стороны.


Прямая Стена. Артем Зубко


По соседству с Прямой Стеной располагается кратер Берт – маленький ударный кратер диаметром 16 км, в котором можно различить следы осыпания пород. От этого же кратера берет свое начало трещина Берт, которая тянется на 50 км к северу.

На северо-востоке взору открывается долина Таурус-Литтров – место посадки Apollo 17 (1972), где в последний раз ступала нога человека на Луну в ХХ веке.


Долина Таурус-Литтров (на фото север внизу). Артем Зубко


На этот район во время полета Apollo 15 обратил внимание пилот командного модуля Альфред Уорден, который работал на орбите, пока его коллеги находились на Луне. Уорден сделал много фотографий и дал специалистам на Земле устные описания. Он отметил более темный цвет поверхности долины по сравнению с цветом поверхности Моря Ясности, обнаружил кратеры с темным обрамлением, похожие на вулканические конусы.

Ширина долины Таурус-Литтров около 7 км, она окружена горами высотой 2 км. Здесь удалось получить образцы высокогорных пород. В пределах досягаемости находился оползень с горного Южного массива, достигший дна долины. А у подножия гор были разбросаны огромные валуны, которые скатились вниз. Следы скатывания некоторых из них имеют протяженность около 2 км.

Обязателен к рассмотрению кратер Гассенди. Это древний крупный лунный ударный кратер на видимой стороне Луны на северо-западной границе Моря Влажности. Его диаметр 111 км, а глубина около полутора километров. Название присвоено в честь французского философа, математика, астронома Пьера Гассенди.


Кратер Гассенди. Артем Зубко


Кратер подвергся частичному заполнению лавой при формировании бассейна Моря Влажности, над поверхностью лавы возвышается сильно разрушенный эрозией полигональный вал кратера и центральные пики с возвышением около 1,4 км над средним уровнем чаши кратера.

В северной части видимой стороны Луны на юго-восточной границе Моря Дождей находятся лунные Апеннины. Они имеют протяженность около 600 км и максимальное возвышение до 5400 м, что дает им право называться самыми высокими горами на видимой стороне Луны.


Апеннины. Артем Зубко


При хороших условиях наблюдения удастся рассмотреть Борозду Хэдли Рилл, в северо-восточной области которой сел лунный модуль Apollo 15. Борозда кажется очень тонкой, хотя ее ширина в среднем 1 км, поэтому, даже если вы смогли рассмотреть ее, увидеть лунный модуль размером 10 м с помощью наземных телескопов не получится.

Борозда Гигин, пожалуй, одно из немногих мест на Луне, которое уже при просмотре через любительский телескоп заставляет задаться вопросом: «А как такое вообще могло получиться?»

Гигин – небольшая лунная борозда, расположенная в восточной части лунного Центрального Залива. Ее ветви простираются на северо-запад и на юго-восток общей протяженностью примерно 220 км. Но представляет интерес скорее то, что лежит в этой борозде.

Кратер Гигин (тот, что побольше и находится прямо посередине борозды) – один из немногих кратеров, которые образовались не от удара метеорита. Его происхождение чисто вулканическое: у него отсутствуют характерный вал и центральный пик. В районе этого кратера мог сесть посадочный модуль Apollo 19, если бы программу не свернули.


Борозда Гигин. Артем Зубко


Однако куда больше впечатляют 17 кратеров, уложенные в борозду аккуратно один за другим. Вероятность, что такое количество тел упадет на поверхность в разное время именно в таком порядке, ничтожно мала. Поэтому одна из версий: они образовались из-за разрушения одного крупного фрагмента. Тем не менее то, как они точно следуют изгибам поверхности, разместившись прямо в ней, представляет собой хорошую головоломку.

ЧТО ВИДНО В ТЕЛЕСКОПЫ С БОЛЬШИМ ДИАМЕТРОМ ОБЪЕКТИВА (БОЛЕЕ 200 ММ)?

С объективом такого диаметра удастся рассмотреть лунные образования размером до 1,5 км. Например, можно постараться разглядеть на дне кратера Платон более мелкие кратеры, хотя бы пять самых крупных из них. На склонах валов многих молодых ударных кратеров начинает проглядываться некая структура – последствия оползней.

КАК ФОТОГРАФИРОВАТЬ ЛУНУ ЧЕРЕЗ ТЕЛЕСКОП?

Зачастую увиденным в телескоп хочется с кем-то поделиться, и лучшее решение – сделать фото интересующего объекта на Луне.

Способов астрономической фотографии достаточно много, самый простой: к окуляру прислонить телефон, веб- камеру или зеркальный фотоаппарат и сделать фото. Однако в какой-то момент качество этих снимков перестанет удовлетворять, и, чтобы его повысить, придется подойти к этому вопросу более основательно.

Чем меньше на пути к фотоматрице различных оптических поверхностей – линз, призм и зеркал, тем меньше искажений вносится в конечное изображение и тем больше деталей будет на нем видно. Поэтому любители астрономии зачастую используют специальные «астрономические» камеры, имеющие удобный типоразмер и без труда фиксирующиеся в окулярном узле телескопа. В них нет линз, на пути матрицы стоит только просветленное стекло, выполняющее скорее защитную функцию и функцию инфракрасного фильтра, если матрица цветная.

 

После замены обычной камеры на «астрономическую» придется также немного изменить подход к получению изображений. Если попробовать сделать одиночный снимок такой камерой, то он все равно будет содержать в себе много шумов и, скорее всего, будет не совсем четким, особенно при плохих условиях астрономической видимости. Для решения этой проблемы была разработана технология сложения кадров. Заключается она в следующем: вместо одиночного кадра снимается видеоролик, содержащий в себе несколько тысяч кадров интересующего объекта (важно, чтобы объект на протяжении съемки всегда находился на одном и том же месте, примерно в центре кадра). Каждый кадр несет в себе уникальную полезную информацию о снимаемом объекте: на каком-то кадре по причине атмосферных искажений будет плохо видна одна деталь, но хорошо видна другая, и наоборот. Чем больше кадров, тем больше деталей получится проявить в итоговом изображении.

Готовая видеозапись разбивается на кадры, однако делается это не вручную: существует свободно распространяемое программное обеспечение, позволяющее удобно и эффективно работать с подобными астрономическими видеороликами. Хорошими примерами служат программы AutoStakkert! и RegiStax. Они помогают отсортировать полученные кадры по убыванию качества и резкости. Лучшие 20–40 % кадров всего видеоролика выбираются для последующего сложения. Во время этой процедуры составляется всего один кадр, вобравший все самое лучшее из складываемых кадров и имеющий оптимальное соотношение сигнал/шум.

На этом процедура обработки не заканчивается, поскольку полученный кадр настолько размытый, что может показаться, что сложение сделало все только хуже. Но не стоит отчаиваться, изображение легко можно улучшить с помощью фильтра Гаусса и вейвлет-преобразования. Эти инструменты доступны также во многих программах, например в уже упомянутом RegiStax. Процесс повышения четкости изображения в большинстве своем творческий, и нужно знать меру, так как можно вытянуть в изображении нежелательные шумы, артефакты и сделать его попросту неестественным.

Надо отметить, что подобные приемы позволяют частично обойти искажение атмосферы, но они не повышают разрешающей способности оптики. Поэтому даже миллион снимков Луны не позволит вам рассмотреть следы астронавтов Apollo без 200-метрового телескопа.