Za darmo

The Principles of Biology, Volume 1 (of 2)

Tekst
iOSAndroidWindows Phone
Gdzie wysłać link do aplikacji?
Nie zamykaj tego okna, dopóki nie wprowadzisz kodu na urządzeniu mobilnym
Ponów próbęLink został wysłany

Na prośbę właściciela praw autorskich ta książka nie jest dostępna do pobrania jako plik.

Można ją jednak przeczytać w naszych aplikacjach mobilnych (nawet bez połączenia z internetem) oraz online w witrynie LitRes.

Oznacz jako przeczytane
Czcionka:Mniejsze АаWiększe Aa

§ 48. One of the chief causes, if not the chief cause, of the differences between the sizes of organisms, has yet to be considered. We are introduced to it by pushing the above inquiry a little further. Small animals have been shown to possess an advantage over large ones in the greater ratio which, other things equal, assimilation bears to expenditure; and we have seen that hence small animals in becoming large ones, gradually lose that surplus of assimilative power which they had, and eventually cannot assimilate more than is required to balance waste. But how come these animals while young and small to have surplus assimilative powers? Have all animals equal surpluses of assimilative powers? And if not, how far do differences between the surpluses determine differences between the limits of growth? We shall find, in the answers to these questions, the interpretation of many marked contrasts in growth that are not due to any of the causes above assigned. For example, an ox immensely exceeds a sheep in mass. Yet the two live from generation to generation in the same fields, eat the same grass, obtain these aliments with the same small expenditure of energy, and differ scarcely at all in their degrees of organization. Whence arises, then, their striking unlikeness of bulk?

We noted when studying the phenomena of growth inductively, that organisms of the larger and higher types commence their separate existences as masses of organic matter having tolerable magnitudes. Speaking generally, we saw that throughout each organic sub-kingdom the acquirement of great bulk occurs only where the incipient bulk and organization are considerable; and that they are the more considerable in proportion to the complexity of the life which the organism is to lead.

The deductive interpretation of this induction may best be commenced by an analogy. A street orange-vendor makes but a trifling profit on each transaction; and unless more than ordinarily fortunate, he is unable to realize during the day a larger amount than will meet his wants; leaving him to start on the morrow in the same condition as before. The trade of the huxter in ounces of tea and half-pounds of sugar, is one similarly entailing much labour for small returns. Beginning with a capital of a few pounds, he cannot have a shop large enough, or goods sufficiently abundant and various, to permit an extensive business. He must be content with the half-pence and pence which he makes by little sales to poor people; and if, avoiding bad debts, he is able by strict economy to accumulate anything, it can be but a trifle. A large retail trader is obliged to lay out much money in fitting up an adequate establishment; he must invest a still greater sum in stock; and he must have a further floating capital to meet the charges that fall due before his returns come in. Setting out, however, with means enough for these purposes, he is able to make many and large sales; and so to get greater and more numerous increments of profit. Similarly, to get returns in thousands merchants and manufacturers must make their investments in tens of thousands. In brief, the rate at which a man's wealth accumulates is measured by the surplus of income over expenditure; and this, save in exceptionably favourable cases, is determined by the capital with which he begins business. Now applying the analogy, we may trace in the transactions of an organism, the same three ultimate elements. There is the expenditure required for the obtainment and digestion of food; there is the gross return in the shape of nutriment assimilated or fit for assimilation; and there is the difference between this gross return of nutriment and the nutriment that was used up in the labour of securing it – a difference which may be a profit or a loss. Clearly, however, a surplus implies that the force expended is less than the force latent in the assimilated food. Clearly, too, the increment of growth is limited to the amount of this surplus of income over expenditure; so that large growth implies both that the excess of nutrition over waste shall be relatively considerable, and that the waste and nutrition shall be on extensive scales. And clearly, the ability of an organism to expend largely and assimilate largely, so as to make a large surplus, presupposes a large physiological capital in the shape of organic matter more or less developed in its structural arrangements.

Throughout the vegetal kingdom, the illustrations of this truth are not conspicuous and regular: the obvious reason being that since plants are accumulators and in so small a degree expenders, the premises of the above argument are but very partially fulfilled. The food of plants (excepting Fungi and certain parasites) being in great measure the same for all, and bathing all so that it can be absorbed without effort, their vital processes result almost entirely in profit. Once fairly rooted in a fit place, a plant may thus from the outset add a very large proportion of its entire returns to capital; and may soon be able to carry on its processes on a large scale, though it does not at first do so. When, however, plants are expenders, namely, during their germination and first stages of growth, their degrees of growth are determined by their amounts of vital capital. It is because the young tree commences life with a ready-formed embryo and store of food sufficient to last for some time, that it is enabled to strike root and lift its head above the surrounding herbage. Throughout the animal kingdom, however, the necessity of this relation is everywhere obvious. The small carnivore preying on small herbivores, can increase in size only by small increments: its organization unfitting it to digest larger creatures, even if it can kill them, it cannot profit by amounts of nutriment exceeding a narrow limit; and its possible increments of growth being small to set out with, and rapidly decreasing, must come to an end before any considerable size is attained. Manifestly the young lion, born of tolerable bulk, suckled until much bigger, and fed until half-grown, is enabled by the power and organization which he thus gets gratis, to catch and kill animals big enough to give him the supply of nutriment needed to meet his large expenditure and yet leave a large surplus for growth. Thus, then, is explained the above-named contrast between the ox and the sheep. A calf and a lamb commence their physiological transactions on widely different scales; their first increments of growth are similarly contrasted in their amounts; and the two diminishing series of such increments end at similarly-contrasted limits.

§ 49. Such are the several conditions by which the phenomena of growth are determined. Conspiring and conflicting in endless unlike ways and degrees, they in every case qualify more or less differently each other's effects. Hence it happens that we are obliged to state each generalization as true on the average, or to make the proviso – other things equal.

Understood in this qualified form, our conclusions are these. First, that growth being an integration with the organism of such environing matters as are of like natures with the matters composing the organism, its growth is dependent on the available supply of them. Second, that the available supply of assimilable matter being the same, and other conditions not dissimilar, the degree of growth varies according to the surplus of nutrition over expenditure – a generalization which is illustrated in some of the broader contrasts between different divisions of organisms. Third, that in the same organism the surplus of nutrition over expenditure differs at different stages; and that growth is unlimited or has a definite limit, according as the surplus does or does not rapidly decrease. This proposition we found exemplified by the almost unceasing growth of organisms that expend relatively little energy; and by the definitely limited growth of organisms that expend much energy. Fourth, that among organisms which are large expenders of force, the size ultimately attained is, other things equal, determined by the initial size: in proof of which conclusion we have abundant facts, as well as the a priori necessity that the sum-totals of analogous diminishing series, must depend upon the amounts of their initial terms. Fifth, that where the likeness of other circumstances permits a comparison, the possible extent of growth depends on the degree of organization; an inference testified to by the larger forms among the various divisions and sub-divisions of organisms.

CHAPTER II.
DEVELOPMENT.19

§ 50. Certain general aspects of Development may be studied apart from any examination of internal structures. These fundamental contrasts between the modes of arrangement of parts, originating, as they do, the leading external distinctions among the various forms of organization, will be best dealt with at the outset. If all organisms have arisen by Evolution, it is of course not to be expected that such several modes of development can be absolutely demarcated: we are sure to find them united by transitional modes. But premising that a classification of modes can but approximately represent the facts, we shall find our general conceptions of Development aided by one.

 

Development is primarily central. All organic forms of which the entire history is known, set out with a symmetrical arrangement of parts round a centre. In organisms of the lowest grade no other mode of arrangement is ever definitely established; and in the highest organisms central development, though subordinate to another mode of development, continues to be habitually shown in the changes of minute structure. Let us glance at these propositions in the concrete. Practically every plant and every animal in its earliest stage is a portion of protoplasm, in the great majority of cases approximately spherical but sometimes elongated, containing a rounded body consisting of specially modified protoplasm, which is called a nucleus; and the first changes that occur in the germ thus constituted, are changes that take place in this nucleus, followed by changes round the centres produced by division of this original centre. From this type of structure, the simplest organisms do not depart; or depart in no definite or conspicuous ways. Among plants, many of the simplest Algæ and Fungi permanently maintain such a central distribution; while among animals it is permanently maintained by creatures like the Gregarina, and in a different manner by the Amœba, Actinophrys, and their allies: the irregularities which are many and great do not destroy this general relation of parts. In larger organisms, made up chiefly of units that are analogous to these simplest organisms, the formation of units ever continues to take place round nuclei; though usually the nuclei soon cease to be centrally placed.

Central development may be distinguished into unicentral and multicentral; according as the product of the original germ develops more or less symmetrically round one centre, or develops without subordination to one centre – develops, that is, in subordination to many centres. Unicentral development, as displayed not in the formation of single cells but in the formation of aggregates, is not common. The animal kingdom shows it only in some of the small group of colonial Radiolaria. It is feebly represented in the vegetal kingdom by a few members of the Volvocineæ. On the other hand, multicentral development, or development round insubordinate centres, is variously exemplified in both divisions of the organic world. It is exemplified in two distinct ways, according as the insubordination among the centres of development is partial or total. We may most conveniently consider it under the heads hence arising.

Total insubordination among the centres of development, is shown where the units or cells, as fast as they are severally formed, part company and lead independent lives. This, in the vegetal kingdom, habitually occurs among the Protophyta, and in the animal kingdom, among the Protozoa. Partial insubordination is seen in those somewhat advanced organisms, that consist of units which, though they have not separated, have so little mutual dependence that the aggregate they form is irregular. Among plants, the Thallophytes very generally exemplify this mode of development. Lichens, spreading with flat or corrugated edges in this or that direction as the conditions determine, have no manifest co-ordination of parts. In the Algæ the Nostocs and various other forms similarly show us an unsymmetrical structure. Of Fungi we may say that creeping kinds display no further dependence of one part on another than is implied by their cohesion. And even in such better-organized plants as the Marchantia, the general arrangement shows no reference to a directive centre. Among animals many of the Sponges in their adult forms may be cited as devoid of that co-ordination implied by symmetry: the units composing them, though they have some subordination to local centres, have no subordination to a general centre. To distinguish that kind of development in which the whole product of a germ coheres in one mass, from that kind of development in which it does not, Professor Huxley has introduced the words "continuous" and "discontinuous;" and these seem the best fitted for the purpose. Multicentral development, then, is divisible into continuous and discontinuous.

From central development we pass insensibly to that higher kind of development for which axial seems the most appropriate name. A tendency towards this is vaguely manifested almost everywhere. The great majority even of Protophyta and Protozoa have different longitudinal and transverse dimensions – have an obscure if not a distinct axial structure. The originally spheroidal and polyhedral units out of which higher organisms are mainly built, usually pass into shapes that are subordinated to lines rather than to points. And in the higher organisms, considered as wholes, an arrangement of parts in relation to an axis is distinct and nearly universal. We see it in the superior orders of Thallophytes; and in all the cormophytic plants. With few exceptions the Cœlenterata clearly exhibit it; it is traceable, though less conspicuously, throughout the Mollusca; and the Annelida, Arthropoda, and Vertebrata uniformly show it with perfect definiteness.

This kind of development, like the first kind, is of two orders. The whole germ-product may arrange itself round a single axis, or it may arrange itself round many axes: the structure may be uniaxial or multiaxial. Each division of the organic kingdom furnishes examples of both these orders. In such Fungi as exhibit axial development at all, we commonly see development round a single axis. Some of the Algæ, as the common tangle, show us this arrangement. And of the higher plants, many Monocotyledons and small Dicotyledons are uniaxial. Of animals, the advanced are without exception in this category. There is no known vertebrate in which the whole of the germ-product is not subordinated to a single axis. In the Arthropoda, the like is universal; as it is also in the superior orders of Mollusca. Multiaxial development occurs in most of the plants we are familiar with – every branch of a shrub or tree being an independent axis. But while in the vegetal kingdom multiaxial development prevails among the highest types, in the animal kingdom it prevails only among the lowest types. It is extremely general, if not universal, among the Cœlenterata; it is characteristic of the Polyzoa; the compound Ascidians exhibit it; and it is seen, though under another form, in certain of the inferior Annelids.

Development that is axial, like development that is central, may be either continuous or discontinuous: the parts having different axes may continue united, or they may separate. Instances of each alternative are supplied by both plants and animals. Continuous multiaxial development is that which plants usually display, and need not be illustrated further than by reference to every garden. As cases of it in animals may be named all the compound Hydrozoa and Actinozoa; and such ascidian forms as the Botryllidæ. Of multiaxial development that is discontinuous, a familiar instance among plants exists in the common strawberry. This sends out over the neighbouring surface, long slender shoots, bearing at their extremities buds that presently strike roots and become new individuals; and these by and by lose their connexions with the original axis. Other plants there are that produce certain specialized buds called bulbils, which separating themselves and falling to the ground, grow into independent plants. Among animals the fresh-water polype very clearly shows this mode of development: the young polypes, budding out from its surface, severally arrange their parts around distinct axes, and eventually detaching themselves, lead separate lives, and produce other polypes after the same fashion. By some of the lower Annelida, this multiplication of axes from an original axis, is carried on after a different manner: the string of segments spontaneously divides; and after further growth, division recurs in one or both of the halves. Moreover in the Syllis ramosa, there occurs lateral branching also.

Grouping together its several modes as above delineated, we see that


Any one well acquainted with the facts, may readily raise objections to this arrangement. He may name forms which do not obviously come under any of these heads. He may point to plants that are for a time multicentral but afterwards develop axially. And from lower types of animals he may choose many in which the continuous and discontinuous modes are both displayed. But, as already hinted, an arrangement free from such anomalies must be impossible, if the various kinds of organization have arisen by Evolution. The one above sketched out is to be regarded as a rough grouping of the facts, which helps us to a conception of them in their totality; and, so regarded, it will be of service when we come to treat of Individuality and Reproduction.

§ 51. From these most general external aspects of organic development, let us now turn to its internal and more special aspects. When treating of Evolution as a universal process of things, a rude outline of the course of structural changes in organisms was given (First Principles, §§ 110, 119, 132). Here it will be proper to describe these changes more fully.

The bud of any common flowering plant in its earliest stage, consists of a small hemispherical or sub-conical projection. While it increases most rapidly at the apex, this presently develops on one side of its base, a smaller projection of like general shape with itself. Here is the rudiment of a leaf, which presently spreads more or less round the base of the central hemisphere or main axis. At the same time that the central hemisphere rises higher, this lateral prominence, also increasing, gives rise to subordinate prominences or lobes. These are the rudiments of stipules, where the leaves are stipulated. Meanwhile, towards the other side of the main axis and somewhat higher up, another lateral prominence arising marks the origin of a second leaf. By the time that the first leaf has produced another pair of lobes, and the second leaf has produced its primary pair, the central hemisphere, still increasing at its apex, exhibits the rudiment of a third leaf. Similarly throughout. While the germ of each succeeding leaf thus arises, the germs of the previous leaves, in the order of their priority, are changing their rude nodulated shapes into flattened-out expansions; which slowly put on those sharp outlines they show when unfolded. Thus from that extremely indefinite figure, a rounded lump, giving off from time to time lateral lumps, which severally becoming symmetrically lobed gradually assume specific and involved forms, we pass little by little to that comparatively complex thing – a leaf-bearing shoot. Internally, a bud undergoes analogous changes; as witness this account: – "The general mass of thin-walled parenchymatous cells which occupies the apical region, and forms the growing point of the shoot, is covered by a single external layer of similar cells, which increase in number by the formation of new walls in one direction only, perpendicular to the surface of the shoot, and thus give rise only to the epidermis or single layer of cells covering the whole surface of the shoot. Meanwhile the general mass below grows as a whole, its constituent cells dividing in all directions. Of the new cells so formed, those removed by these processes of growth and division from the actual apex, begin, at a greater or less distance from it, to show signs of the differentiation which will ultimately lead to the formation of the various tissues enclosed by the epidermis of the shoot. First the pith, then the vascular bundles, and then the cortex of the shoot, begin to take on their special characters." Similarly with secondary structures, as the lateral buds whence leaves arise. In the, at first, unorganized mass of cells constituting the rudimentary leaf, there are formed vascular bundles which eventually become the veins of the leaf; and pari passu with these are formed the other tissues of the leaf. Nor do we fail to find an essentially parallel set of changes, when we trace the histories of the individual cells. While the tissues they compose are separating, the cells are growing step by step more unlike. Some become flat, some polyhedral, some cylindrical, some prismatic, some spindle-shaped. These develop spiral thickenings in their interiors; and those, reticulate thickenings. Here a number of cells unite together to form a tube: and there they become almost solid by the internal deposition of woody or other substance. Through such changes, too numerous and involved to be here detailed, the originally uniform cells go on diverging and rediverging until there are produced various forms that seem to have very little in common.

 

The arm of a man makes its first appearance in as simple a way as does the shoot of a plant. According to Bischoff, it buds-out from the side of the embryo as a little tongue-shaped projection, presenting no differences of parts; and it might serve for the rudiment of some one of the various other organs that also arise as buds. Continuing to lengthen, it presently becomes somewhat enlarged at its end; and is then described as a pedicle bearing a flattened, round-edged lump. This lump is the representative of the future hand, and the pedicle of the future arm. By and by, at the edges of this flattened lump, there appear four clefts, dividing from each other the buds of the future fingers; and the hand as a whole grows a little more distinguishable from the arm. Up to this time the pedicle has remained one continuous piece, but it now begins to show a bend at its centre, which indicates the division into arm and forearm. The distinctions thus rudely indicated gradually increase: the fingers elongate and become jointed, and the proportions of all the parts, originally very unlike those of the complete limb, slowly approximate to them. During its bud-like stage, the rudimentary arm consists only of partially-differentiated tissues. By the diverse changes these gradually undergo they are transformed into bones, muscles, blood-vessels, and nerves. The extreme softness and delicacy of these primary tissues, renders it difficult to trace the initial stages of the differentiations. In consequence of the colour of their contents, the blood-vessels are the first parts to become distinct. Afterwards the cartilaginous parts, which are the bases of the future bones, become marked out by the denser aggregation of their constituent cells, and by the production between these of a hyaline substance which unites them into a translucent mass. When first perceptible, the muscles are gelatinous, pale, yellowish, transparent, and indistinguishable from their tendons. The various other tissues of which the arm consists, beginning with very faintly-marked differences, become day by day more definite in their qualitative appearances. In like manner the units composing these tissues severally assume increasingly-specific characters. The fibres of muscle, at first made visible in the midst of their gelatinous matrix only by immersion in alcohol, grow more numerous and distinct; and by and by they begin to exhibit transverse stripes. The bone-cells put on by degrees their curious structure of branching canals. And so in their respective ways with the units of skin and the rest.

Thus in each of the organic sub-kingdoms, we see this change from an incoherent, indefinite homogeneity to a coherent, definite heterogeneity, illustrated in a quadruple way. The originally-like units called cells, become unlike in various ways, and in ways more numerous and marked as the development goes on. The several tissues which these several classes of cells form by aggregation, grow little by little distinct from each other; and little by little put on those structural complexities that arise from differentiations among their component units. In the shoot, as in the limb, the external form, originally very simple, and having much in common with simple forms in general, gradually acquires an increasing complexity, and an increasing unlikeness to other forms. Meanwhile, the remaining parts of the organism to which the shoot or limb belongs, having been severally assuming structures divergent from one another and from that of this particular shoot or limb, there has arisen a greater heterogeneity in the organism as a whole.

§ 52. One of the most remarkable inductions of embryology comes next in order. And here we find illustrated the general truth that in mental evolution as in bodily evolution the progress is from the indefinite and inexact to the definite and exact. For the first statement of this induction was but an adumbration of the correct statement.

As a result of his examinations von Baer alleged that in its earliest stage every organism has the greatest number of characters in common with all other organisms in their earliest stages; that at a stage somewhat later its structure is like the structures displayed at corresponding phases by a less extensive assemblage of organisms; that at each subsequent stage traits are acquired which successively distinguish the developing embryo from groups of embryos that it previously resembled – thus step by step diminishing the group of embryos which it still resembles; and that thus the class of similar forms is finally narrowed to the species of which it is a member. This abstract proposition will perhaps not be fully comprehended by the general reader. It will be best to re-state it in a concrete shape. Supposing the germs of all kinds of organisms to be simultaneously developing, we may say that all members of the vast multitude take their first steps in the same direction; that at the second step one-half of this vast multitude diverges from the other half, and thereafter follows a different course of development; that the immense assemblage contained in either of these divisions very soon again shows a tendency to take two or more routes of development; that each of the two or more minor assemblages thus resulting, shows for a time but small divergences among its members, but presently again divides into groups which separate ever more widely as they progress; and so on until each organism, when nearly complete, is accompanied in its further modifications only by organisms of the same species; and last of all, assumes the peculiarities which distinguish it as an individual – diverges to a slight extent to the organisms it is most like.

But, as above said, this statement is only an adumbration. The order of Nature is habitually more complex than our generalizations represent it as being – refuses to be fully expressed in simple formulæ; and we are obliged to limit them by various qualifications. It is thus here. Since von Baer's day the careful observations of numerous observers have shown his allegation to be but approximately true. Hereafter, when discussing the embryological evidence of Evolution, the causes of deviations will be discussed. For the present it suffices to recognize as unquestionable the fact that whereas the germs of organisms are extremely similar, they gradually diverge widely, in modes now regular and now irregular, until in place of a multitude of forms practically alike we finally have a multitude of forms most of which are extremely unlike. Thus, in conformity with the law of evolution, not only do the parts of each organism advance from indefinite homogeneity to definite heterogeneity, but the assemblage of all organisms does the same: a truth already indicated in First Principles.

§ 53. This comparison between the course of development, in any creature, and the course of development in all other creatures – this arrival at the conclusion that the course of development in each, at first the same as in all others, becomes stage by stage differentiated from the courses in all others, brings us within view of an allied conclusion. If we contemplate the successive stages passed through by any higher organism, and observe the relation between it and its environment at each of these stages; we shall see that this relation is modified in a way analogous to that in which the relation between the organism and its environment is modified, as we advance from the lowest to the highest grades. Along with the progressing differentiation of each organism from others, we find a progressing differentiation of it from its environment; like that progressing differentiation from the environment which we meet with in the ascending forms of life. Let us first glance at the way in which the ascending forms of life exhibit this progressing differentiation from the environment.

19In ordinary speech Development is often used as synonymous with Growth. It hence seems needful to say that Development as here and hereafter used, means increase of structure and not increase of bulk. It may be added that the word Evolution, comprehending growth as well as Development, is to be reserved for occasions when both are implied.