Za darmo

First Principles

Tekst
0
Recenzje
iOSAndroidWindows Phone
Gdzie wysłać link do aplikacji?
Nie zamykaj tego okna, dopóki nie wprowadzisz kodu na urządzeniu mobilnym
Ponów próbęLink został wysłany

Na prośbę właściciela praw autorskich ta książka nie jest dostępna do pobrania jako plik.

Można ją jednak przeczytać w naszych aplikacjach mobilnych (nawet bez połączenia z internetem) oraz online w witrynie LitRes.

Oznacz jako przeczytane
Czcionka:Mniejsze АаWiększe Aa

CHAPTER XI.
THE RHYTHM OF MOTION

§ 93. When the pennant of a vessel lying becalmed first shows the coming breeze, it does so by gentle undulations that travel from its fixed to its free end. Presently the sails begin to flap; and their blows against the mast increase in rapidity as the breeze rises. Even when, being fully bellied out, they are in great part steadied by the strain of the yards and cordage, their free edges tremble with each stronger gust. And should there come a gale, the jar that is felt on laying hold of the shrouds shows that the rigging vibrates; while the rush and whistle of the wind prove that in it, also, rapid undulations are generated. Ashore the conflict between the current of air and the things it meets results in a like rhythmical action. The leaves all shiver in the blast; each branch oscillates; and every exposed tree sways to and fro. The blades of grass and dried bents in the meadows, and still better the stalks in the neighbouring corn-fields, exhibit the same rising and falling movement. Nor do the more stable objects fail to do the like, though in a less manifest fashion; as witness the shudder that may be felt throughout a house during the paroxysms of a violent storm. Streams of water produce in opposing objects the same general effects as do streams of air. Submerged weeds growing in the middle of a brook, undulate from end to end. Branches brought down by the last flood, and left entangled at the bottom where the current is rapid, are thrown into a state of up and down movement that is slow or quick in proportion as they are large or small; and where, as in great rivers like the Mississippi, whole trees are thus held, the name “sawyers,” by which they are locally known, sufficiently describes the rhythm produced in them. Note again the effect of the antagonism between the current and its channel. In shallow places, where the action of the bottom on the water flowing over it is visible, we see a ripple produced – a series of undulations. And if we study the action and re-action going on between the moving fluid and its banks, we still find the principle illustrated, though in a different way. For in every rivulet, as in the mapped-out course of every great river, the bends of the stream from side to side throughout its tortuous course constitute a lateral undulation – an undulation so inevitable that even an artificially straightened channel is eventually changed into a serpentine one. Analogous phenomena may be observed where the water is stationary and the solid matter moving. A stick drawn laterally through the water with much force, proves by the throb which it communicates to the hand that it is in a state of vibration. Even where the moving body is massive, it only requires that great force should be applied to get a sensible effect of like kind: instance the screw of a screw-steamer, which instead of a smooth rotation falls into a rapid rhythm that sends a tremor through the whole vessel. The sound which results when a bow is drawn over a violin-string, shows us vibrations produced by the movement of a solid over a solid. In lathes and planing machines, the attempt to take off a thick shaving causes a violent jar of the whole apparatus, and the production of a series of waves on the iron or wood that is cut. Every boy in scraping his slate-pencil finds it scarcely possible to help making a ridged surface. If you roll a ball along the ground or over the ice, there is always more or less up and down movement – a movement that is visible while the velocity is considerable, but becomes too small and rapid to be seen by the unaided eye as the velocity diminishes. However smooth the rails, and however perfectly built the carriages, a railway-train inevitably gets into oscillations, both lateral and vertical. Even where moving matter is suddenly arrested by collision, the law is still illustrated; for both the body striking and the body struck are made to tremble; and trembling is rhythmical movement. Little as we habitually observe it, it is yet certain that the impulses our actions impress from moment to moment on surrounding objects, are propagated through them in vibrations. It needs but to look through a telescope of high power, to be convinced that each pulsation of the heart gives a jar to the whole room. If we pass to motions of another order – those namely which take place in the etherial medium – we still find the same thing. Every fresh discovery confirms the hypothesis that light consists of undulations. The rays of heat, too, are now found to have a like fundamental nature; their undulations differing from those of light only in their comparative length. Nor do the movements of electricity fail to furnish us with an illustration; though one of a different order. The northern aurora may often be observed to pulsate with waves of greater brightness; and the electric discharge through a vacuum shows us by its stratified appearance that the current is not uniform, but comes in gushes of greater and lesser intensity. Should it be said that at any rate there are some motions, as those of projectiles, which are not rhythmical, the reply is, that the exception is apparent only; and that these motions would be rhythmical if they were not interrupted. It is common to assert that the trajectory of a cannon ball is a parabola; and it is true that (omitting atmospheric resistance) the curve described differs so slightly from a parabola that it may practically be regarded as one. But, strictly speaking, it is a portion of an extremely eccentric ellipse, having the Earth’s centre of gravity for its remoter focus; and but for its arrest by the substance of the Earth, the cannon ball would travel round that focus and return to the point whence it started; again to repeat this slow rhythm. Indeed, while seeming at first sight to do the reverse, the discharge of a cannon furnishes one of the best illustrations of the principle enunciated. The explosion produces violent undulations in the surrounding air. The whizz of the shot, as it flies towards its mark, is due to another series of atmospheric undulations. And the movement to and from the Earth’s centre, which the cannon ball is beginning to perform, being checked by solid matter, is transformed into a rhythm of another order; namely, the vibration which the blow sends through neighbouring bodies.15

Rhythm is very generally not simple but compound. There are usually at work various forces, causing undulations differing in rapidity; and hence it continually happens that besides the primary rhythms there are secondary rhythms, produced by the periodic coincidence and antagonism of the primary ones. Double, triple, and even quadruple rhythms, are thus generated. One of the simplest instances is afforded by what in acoustics are known as “beats:” recurring intervals of sound and silence which are perceived when two notes of nearly the same pitch are struck together; and which are due to the alternate correspondence and antagonism of the atmospheric waves. In like manner the various phenomena due to what is called interference of light, severally result from the periodic agreement and disagreement of etherial undulations – undulations which, by alternately intensifying and neutralizing each other, produce intervals of increased and diminished light. On the sea-shore may be noted sundry instances of compound rhythm. We have that of the tides, in which the daily rise and fall undergoes a fortnightly increase and decrease, due to the alternate coincidence and antagonism of the solar and lunar attractions. We have again that which is perpetually furnished by the surface of the sea: every large wave bearing smaller ones on its sides, and these still smaller ones; with the result that each flake of foam, along with the portion of water bearing it, undergoes minor ascents and descents of several orders while it is being raised and lowered by the greater billows. A quite different and very interesting example of compound rhythm, occurs in the little rills which, at low tide, run over the sand out of the shingle banks above. Where the channel of one of these is narrow, and the stream runs strongly, the sand at the bottom is raised into a series of ridges corresponding to the ripple of the water. On watching for a short time, it will be seen that these ridges are being raised higher and the ripple growing stronger; until at length, the action becoming violent, the whole series of ridges is suddenly swept away, the stream runs smoothly, and the process commences afresh. Instances of still more complex rhythms might be added; but they will come more appropriately in connexion with the several forms of Evolution, hereafter to be dealt with.

From the ensemble of the facts as above set forth, it will be seen that rhythm results wherever there is a conflict of forces not in equilibrium. If the antagonist forces at any point are balanced, there is rest; and in the absence of motion there can of course be no rhythm. But if instead of a balance there is an excess of force in one direction – if, as necessarily follows, motion is set up in that direction; then for that motion to continue uniformly in that direction, it is requisite that the moving matter should, notwithstanding its unceasing change of place, present unchanging relations to the sources of force by which its motion is produced and opposed. This however is impossible. Every further transfer through space must alter the ratio between the forces concerned – must increase or decrease the predominance of one force over the other – must prevent uniformity of movement. And if the movement cannot be uniform, then, in the absence of acceleration or retardation continued through infinite time and space, (results which cannot be conceived) the only alternative is rhythm.

 

A secondary conclusion must not be omitted. In the last chapter we saw that motion is never absolutely rectilinear; and here it remains to be added that, as a consequence, rhythm is necessarily incomplete. A truly rectilinear rhythm can arise only when the opposing forces are in exactly the same line; and the probabilities against this are infinitely great. To generate a perfectly circular rhythm, the two forces concerned must be exactly at right angles to each other, and must have exactly a certain ratio; and against this the probabilities are likewise infinitely great. All other proportions and directions of the two forces will produce an ellipse of greater or less eccentricity. And when, as indeed always happens, above two forces are engaged, the curve described must be more complex; and cannot exactly repeat itself. So that in fact throughout nature, this action and re-action of forces never brings about a complete return to a previous state. Where the movement is very involved, and especially where it is that of some aggregate whose units are partially independent, anything like a regular curve is no longer traceable; we see nothing more than a general oscillation. And on the completion of any periodic movement, the degree in which the state arrived at differs from the state departed from, is usually marked in proportion as the influences at work are numerous.

§ 94. That spiral arrangement so general among the more diffused nebulæ – an arrangement which must be assumed by matter moving towards a centre of gravity through a resisting medium – shows us the progressive establishment of revolution, and therefore of rhythm; in those remote spaces which the nebulæ occupy. Double stars, moving round common centres of gravity in periods some of which are now ascertained, exhibit settled rhythmical actions in distant parts of our sidereal system. And another fact which, though of a different order, has a like general significance, is furnished by variable stars – stars which alternately brighten and fade.

The periodicities of the planets, satellites, and comets, are so familiar that it would be inexcusable to name them, were it not needful here to point out that they are so many grand illustrations of this general law of movement. But besides the revolutions of these bodies in their orbits (all more or less excentric) and their rotations on their axes, the Solar System presents us with various rhythms of a less manifest and more complex kind. In each planet and satellite there is the revolution of the nodes – a slow change in the position of the orbit-plane, which after completing itself commences afresh. There is the gradual alteration in the length of the axis major of the orbit; and also of its excentricity: both of which are rhythmical alike in the sense that they alternate between maxima and minima, and in the sense that the progress from one extreme to the other is not uniform, but is made with fluctuating velocity. Then, too, there is the revolution of the line of apsides, which in course of time moves round the heavens – not regularly, but through complex oscillations. And further we have variations in the directions of the planetary axes – that known as nutation, and that larger gyration which, in the case of the Earth, causes the precession of the equinoxes. These rhythms, already more or less compound, are compounded with each other. Such an instance as the secular acceleration and retardation of the moon, consequent on the varying excentricity of the Earth’s orbit, is one of the simplest. Another, having more important consequences, results from the changing direction of the axes of rotation in planets whose orbits are decidedly excentric. Every planet, during a certain long period, presents more of its northern than of its southern hemisphere to the sun at the time of its nearest approach to him; and then again, during a like period, presents more of its southern hemisphere than of its northern – a recurring coincidence which, though causing in some planets no sensible alterations of climate, involves in the case of the Earth an epoch of 21,000 years, during which each hemisphere goes through a cycle of temperate seasons, and seasons that are extreme in their heat and cold. Nor is this all. There is even a variation of this variation. For the summers and winters of the whole Earth become more or less strongly contrasted, as the excentricity of its orbit increases and decreases. Hence during increase of the excentricity, the epochs of moderately contrasted seasons and epochs of strongly contrasted seasons, through which alternately each hemisphere passes, must grow more and more different in the degrees of their contrasts; and contrariwise during decrease of the excentricity. So that in the quantity of light and heat which any portion of the Earth receives from the sun, there goes on a quadruple rhythm: that of day and night; that of summer and winter; that due to the changing position of the axis at perihelion and aphelion, taking 21,000 years to complete; and that involved by the variation of the orbit’s excentricity, gone through in millions of years.

§ 95. Those terrestrial processes whose dependence on the solar heat is direct, of course exhibit a rhythm that corresponds to the periodically changing amount of heat which each part of the Earth receives. The simplest, though the least obtrusive, instance is supplied by the magnetic variations. In these there is a diurnal increase and decrease, an annual increase and decrease, and a decennial increase and decrease; the latter answering to a period during which the solar spots become alternately abundant and scarce: besides which known variations there are probably others corresponding with the astronomical cycles just described. More obvious examples are furnished by the movements of the ocean and the atmosphere. Marine currents from the equator to the poles above, and from the poles to the equator beneath, show us an unceasing backward and forward motion throughout this vast mass of water – a motion varying in amount according to the seasons, and compounded with smaller like motions of local origin. The similarly-caused general currents in the air, have similar annual variations similarly modified. Irregular as they are in detail, we still see in the monsoons and other tropical atmospheric disturbances, or even in our own equinoctial gales and spring east winds, a periodicity sufficiently decided. Again, we have an alternation of times during which evaporation predominates with times during which condensation predominates: shown in the tropics by strongly marked rainy seasons and seasons of drought, and in the temperate zones by corresponding changes of which the periodicity, though less definite, is still traceable. The diffusion and precipitation of water, besides the slow alternations answering to different parts of the year, furnish us with examples of rhythm of a more rapid kind. During wet weather, lasting, let us say, over some weeks, the tendency to condense, though greater than the tendency to evaporate, does not show itself in continuous rain; but the period is made up of rainy days and days that are wholly or partially fair. Nor is it in this rude alternation only that the law is manifested. During any day throughout this wet weather a minor rhythm is traceable; and especially so when the tendencies to evaporate and to condense are nearly balanced. Among mountains this minor rhythm and its causes may be studied to great advantage. Moist winds, which do not precipitate their contained water in passing over the comparatively warm lowlands, lose so much heat when they reach the cold mountain peaks, that condensation rapidly takes place. Water, however, in passing from the gaseous to the fluid state, gives out a considerable amount of heat; and hence the resulting clouds are warmer than the air that precipitates them, and much warmer than the high rocky surfaces round which they fold themselves. Hence in the course of the storm, these high rocky surfaces are raised in temperature, partly by radiation from the enwrapping cloud, partly by contact of the falling rain-drops. Giving off more heat than before, they no longer lower so greatly the temperature of the air passing over them; and so cease to precipitate its contained water. The clouds break; the sky begins to clear; and a gleam of sunshine promises that the day is going to be fine. But the small supply of heat which the cold mountain’s sides have received, is soon lost: especially when the dispersion of the clouds permits free radiation into space. Very soon, therefore, these elevated surfaces, becoming as cold as at first, (or perhaps even colder in virtue of the evaporation set up,) begin again to condense the vapour in the air above; and there comes another storm, followed by the same effects as before. In lowland regions this action and reaction is usually less conspicuous, because the contrast of temperatures is less marked. Even here, however, it may be traced; and that not only on showery days, but on days of continuous rain; for in these we do not see uniformity: always there are fits of harder and gentler rain that are probably caused as above explained.

Of course these meteorologic rhythms involve something corresponding to them in the changes wrought by wind and water on the Earth’s surface. Variations in the quantities of sediment brought down by rivers that rise and fall with the seasons, must cause variations in the resulting strata – alternations of colour or quality in the successive laminæ. Beds formed from the detritus of shores worn down and carried away by the waves, must similarly show periodic differences answering to the periodic winds of the locality. In so far as frost influences the rate of denudation, its recurrence is a factor in the rhythm of sedimentary deposits. And the geological changes produced by glaciers and icebergs must similarly have their alternating periods of greater and less intensity.

There is evidence also that modifications in the Earth’s crust due to igneous action have a certain periodicity. Volcanic eruptions are not continuous but intermittent, and as far as the data enable us to judge, have a certain average rate of recurrence; which rate of recurrence is complicated by rising into epochs of greater activity and falling into epochs of comparative quiescence. So too is it with earthquakes and the elevations or depressions caused by them. At the mouth of the Mississippi, the alternation of strata gives decisive proof of successive sinkings of the surface, that have taken place at tolerably equal intervals. Everywhere, in the extensive groups of conformable strata that imply small subsidences recurring with a certain average frequency, we see a rhythm in the action and reaction between the Earth’s crust and its molten contents – a rhythm compounded with those slower ones shown in the termination of groups of strata, and the commencement of other groups not conformable to them. There is even reason for suspecting a geological periodicity that is immensely slower and far wider in its effects; namely, an alternation of those vast upheavals and submergencies by which continents are produced where there were oceans, and oceans where there were continents. For supposing, as we may fairly do, that the Earth’s crust is throughout of tolerably equal thickness, it is manifest that such portions of it as become most depressed below the average level, must have their inner surfaces most exposed to the currents of molten matter circulating within, and will therefore undergo a larger amount of what may be called igneous denudation; while, conversely, the withdrawal of the inner surfaces from these currents where the Earth’s crust is most elevated, will cause a thickening more or less compensating the aqueous denudation going on externally. Hence those depressed areas over which the deepest oceans lie, being gradually thinned beneath and not covered by much sedimentary deposit above, will become areas of least resistance, and will then begin to yield to the upward pressure of the Earth’s contents; whence will result, throughout such areas, long-continued elevations, ceasing only when the reverse state of things has been brought about. Whether this speculation be well or ill founded, does not however affect the general conclusion. Apart from it we have sufficient evidence that geologic processes are rhythmical.

§ 96. Perhaps nowhere are the illustrations of rhythm so numerous and so manifest as among the phenomena of life. Plants do not, indeed, usually show us any decided periodicities, save those determined by day and night and by the seasons. But in animals we have a great variety of movements in which the alternation of opposite extremes goes on with all degrees of rapidity. The swallowing of food is effected by a wave of constriction passing along the œsophagus; its digestion is accompanied by a muscular action of the stomach that is also undulatory; and the peristaltic motion of the intestines is of like nature. The blood obtained from this food is propelled not in a uniform current but in pulses; and it is aerated by lungs that alternately contract and expand. All locomotion results from oscillating movements: even where it is apparently continuous, as in many minute forms, the microscope proves the vibration of cilia to be the agency by which the creature is moved smoothly forwards.

 

Primary rhythms of the organic actions are compounded with secondary ones of longer duration. These various modes of activity have their recurring periods of increase and decrease. We see this in the periodic need for food, and in the periodic need for repose. Each meal induces a more rapid rhythmic action of the digestive organs; the pulsation of the heart is accelerated; and the inspirations become more frequent. During sleep, on the contrary, these several movements slacken. So that in the course of the twenty-four hours, those small undulations of which the different kinds of organic action are constituted, undergo one long wave of increase and decrease, complicated with several minor waves. Experiments have shown that there are still slower rises and falls of functional activity. Waste and assimilation are not balanced by every meal, but one or other maintains for some time a slight excess; so that a person in ordinary health is found to undergo an increase and decrease of weight during recurring intervals of tolerable equality. Besides these regular periods there are still longer and comparatively irregular ones; namely, those alternations of greater and less vigour, which even healthy people experience. So inevitable are these oscillations that even men in training cannot be kept stationary at their highest power, but when they have reached it begin to retrograde. Further evidence of rhythm in the vital movements is furnished by invalids. Sundry disorders are named from the intermittent character of their symptoms. Even where the periodicity is not very marked, it is mostly traceable. Patients rarely if ever get uniformly worse; and convalescents have usually their days of partial relapse or of less decided advance.

Aggregates of living creatures illustrate the general truth in other ways. If each species of organism be regarded as a whole, it displays two kinds of rhythm. Life as it exists in all the members of such species, is an extremely complex kind of movement, more or less distinct from the kinds of movement which constitutes life in other species. In each individual of the species, this extremely complex kind of movement begins, rises to its climax, declines, and ceases in death. And every successive generation thus exhibits a wave of that peculiar activity characterizing the species as a whole. The other form of rhythm is to be traced in that variation of number which each tribe of animals and plants is ever undergoing. Throughout the unceasing conflict between the tendency of a species to increase and the antagonistic tendencies, there is never an equilibrium: one always predominates. In the case even of a cultivated plant or domesticated animal, where artificial means are used to maintain the supply at a uniform level, we still see that oscillations of abundance and scarcity cannot be avoided. And among the creatures uncared for by man, such oscillations are usually more marked. After a race of organisms has been greatly thinned by enemies or lack of food, its surviving members become more favourably circumstanced than usual. During the decline in their numbers their food has grown relatively more abundant; while their enemies have diminished from want of prey. The conditions thus remain for some time favourable to their increase; and they multiply rapidly. By and by their food is rendered relatively scarce, at the same time that their enemies have become more numerous; and the destroying influences being thus in excess, their number begins to diminish again. Yet one more rhythm, extremely slow in its action, may be traced in the phenomena of Life, contemplated under their most general aspect. The researches of palæontologists show, that there have been going on, during the vast period of which our sedimentary rocks bear record, successive changes of organic forms. Species have appeared, become abundant, and then disappeared. Genera, at first constituted of but few species, have for a time gone on growing more multiform; and then have begun to decline in the number of their subdivisions; leaving at last but one or two representatives, or none at all. During longer epochs whole orders have thus arisen, culminated, and dwindled away. And even those wider divisions containing many orders have similarly undergone a gradual rise, a high tide, and a long-continued ebb. The stalked Crinoidea, for example, which, during the carboniferous epoch, became abundant, have almost disappeared: only a single species being extant. Once a large family of molluscs, the Brachiopoda have now become rare. The shelled Cephalopods, at one time dominant among the inhabitants of the ocean, both in number of forms and of individuals, are in our day nearly extinct. And after an “age of reptiles,” there has come an age in which reptiles have been in great measure supplanted by mammals. Whether these vast rises and falls of different kinds of life ever undergo anything approaching to repetitions, (which they may possibly do in correspondence with those vast cycles of elevation and subsidence that produce continents and oceans,) it is sufficiently clear that Life on the Earth has not progressed uniformly, but in immense undulations.

§ 97. It is not manifest that the changes of consciousness are in any sense rhythmical. Yet here, too, analysis proves both that the mental state existing at any moment is not uniform, but is decomposable into rapid oscillations; and also that mental states pass through longer intervals of increasing and decreasing intensity.

Though while attending to any single sensation, or any group of related sensations constituting the consciousness of an object, we seem to remain for the time in a persistent and homogeneous condition of mind, a careful self-examination shows that this apparently unbroken mental state is in truth traversed by a number of minor states, in which various other sensations and perceptions are rapidly presented and disappear. From the admitted fact that thinking consists in the establishment of relations, it is a necessary corollary that the maintenance of consciousness in any one state to the entire exclusion of other states, would be a cessation of thought, that is, of consciousness. So that any seemingly continuous feeling, say of pressure, really consists of portions of that feeling perpetually recurring after the momentary intrusion of other feelings and ideas – quick thoughts concerning the place where it is felt, the external object producing it, its consequences, and other things suggested by association. Thus there is going on an extremely rapid departure from, and return to, that particular mental state which we regard as persistent. Besides the evidence of rhythm in consciousness which direct analysis thus affords, we may gather further evidence from the correlation between feeling and movement. Sensations and emotions expend themselves in producing muscular contractions. If a sensation or emotion were strictly continuous, there would be a continuous discharge along those motor nerves acted upon. But so far as experiments with artificial stimuli enable us to judge, a continuous discharge along the nerve leading to a muscle, does not contract it: a broken discharge is required – a rapid succession of shocks. Hence muscular contraction pre-supposes that rhythmic state of consciousness which direct observation discloses. A much more conspicuous rhythm, having longer waves, is seen during the outflow of emotion into dancing, poetry, and music. The current of mental energy that shows itself in these modes of bodily action, is not continuous, but falls into a succession of pulses. The measure of a dance is produced by the alternation of strong muscular contractions with weaker ones; and, save in measures of the simplest order such as are found among barbarians and children, this alternation is compounded with longer rises and falls in the degree of muscular excitement. Poetry is a form of speech which results when the emphasis is regularly recurrent; that is, when the muscular effort of pronunciation has definite periods of greater and less intensity – periods that are complicated with others of like nature answering to the successive verses. Music, in still more various ways, exemplifies the law. There are the recurring bars, in each of which there is a primary and a secondary beat. There is the alternate increase and decrease of muscular strain, implied by the ascents and descents to the higher and lower notes – ascents and descents composed of smaller waves, breaking the rises and falls of the larger ones, in a mode peculiar to each melody. And then we have, further, the alternation of piano and forte passages. That these several kinds of rhythm, characterizing æsthetic expression, are not, in the common sense of the word, artificial, but are intenser forms of an undulatory movement habitually generated by feeling in its bodily discharge, is shown by the fact that they are all traceable in ordinary speech; which in every sentence has its primary and secondary emphases, and its cadence containing a chief rise and fall complicated with subordinate rises and falls; and which is accompanied by a more or less oscillatory action of the limbs when the emotion is great. Still longer undulations may be observed by every one, in himself and in others, on occasions of extreme pleasure or extreme pain. Note, in the first place, that pain having its origin in bodily disorder, is nearly always perceptibly rhythmical. During hours in which it never actually ceases, it has its variations of intensity – fits or paroxysms; and then after these hours of suffering there usually come hours of comparative ease. Moral pain has the like smaller and larger waves. One possessed by intense grief does not utter continuous moans, or shed tears with an equable rapidity; but these signs of passion come in recurring bursts. Then after a time during which such stronger and weaker waves of emotion alternate, there comes a calm – a time of comparative deadness; to which again succeeds another interval, when dull sorrow rises afresh into acute anguish, with its series of paroxysms. Similarly in great delight, especially as manifested by children who have its display less under control, there are visible variations in the intensity of feeling shown – fits of laughter and dancing about, separated by pauses in which smiles, and other slight manifestations of pleasure, suffice to discharge the lessened excitement. Nor are there wanting evidences of mental undulations greater in length than any of these – undulations which take weeks, or months, or years, to complete themselves. We continually hear of moods which recur at intervals. Very many persons have their epochs of vivacity and depression. There are periods of industry following periods of idleness; and times at which particular subjects or tastes are cultivated with zeal, alternating with times at which they are neglected. Respecting which slow oscillations, the only qualification to be made is, that being affected by numerous influences, they are comparatively irregular.

15After having for some years supposed myself alone in the belief that all motion is rhythmical, I discovered that my friend Professor Tyndall also held this doctrine.