Za darmo

First Principles

Tekst
0
Recenzje
iOSAndroidWindows Phone
Gdzie wysłać link do aplikacji?
Nie zamykaj tego okna, dopóki nie wprowadzisz kodu na urządzeniu mobilnym
Ponów próbęLink został wysłany

Na prośbę właściciela praw autorskich ta książka nie jest dostępna do pobrania jako plik.

Można ją jednak przeczytać w naszych aplikacjach mobilnych (nawet bez połączenia z internetem) oraz online w witrynie LitRes.

Oznacz jako przeczytane
Czcionka:Mniejsze АаWiększe Aa

“But what,” it may be asked, “has in such case become of all that motion which brought about the aggregation of this diffused matter into solid bodies?” The rotation of each body can be but a residuary result of concentration – a result due to the imperfect balancing of gravitative movements from opposite points towards the common centre. Such gravitative movements from opposite points must in great measure destroy each other. What then has become of these mutually-destroyed motions? The answer which the doctrine of correlation suggests is – they must have been radiated in the form of heat and light. And this answer the evidence, so far as it goes, confirms. Apart from any speculation respecting the genesis of the solar system, the inquiries of geologists lead to the conclusion that the heat of the Earth’s still molten nucleus is but a remnant of the heat which once made molten the entire Earth. The mountainous surfaces of the Moon and of Venus (which alone are near enough to be scrutinized), indicating, as they do, crusts that have, like our own, been corrugated by contraction, imply that these bodies too have undergone refrigeration – imply in each of them a primitive heat, such as the hypothesis necessitates. Lastly, we have in the Sun a still-continued production of this heat and light, which must result from the arrest of diffused matter moving towards a common centre of gravity. Here also, as before, a quantitative relation is traceable. Among the bodies which make up the Solar System, those containing comparatively small amounts of matter whose centripetal motion has been destroyed, have already lost nearly all the produced heat: a result which their relatively larger surfaces have facilitated. But the Sun, a thousand times as great in mass as the largest planet, and having therefore to give off an enormously greater quantity of heat and light due to arrest of moving matter, is still radiating with great intensity.

Thus we see that when, in pursuance of the doctrine of correlation, we ask whence come the forces which our Solar System displays, the hypothesis of Evolution gives us a proximate explanation. If the Solar System once existed in a state of indefinite, incoherent homogeneity, and has progressed to its present state of definite, coherent heterogeneity; then the Motion, Heat, and Light now exhibited by its members, are interpretable as the correlatives of pre-existing forces; and between them and their antecedents we may discern relations that are not only qualitative, but also rudely quantitative. How matter came to exist under the form assumed, is a mystery which we must regard as ultimate. But grant such a previous form of existence, and the hypothesis of Evolution interpreted by the laws of correlation, explains for us the forces as we now see them.

§ 80. If we inquire the origin of those forces which have wrought the surface of our planet into its present shape, we find them traceable to the same primordial source as that just assigned. Assuming the solar system to have been evolved, then geologic changes are either direct or indirect results of the unexpended heat caused by nebular condensation. These changes are commonly divided into igneous and aqueous: – heads under which we may most conveniently consider them.

All those periodic disturbances which we call earthquakes, all those elevations and subsidences which they severally produce, all those accumulated effects of many such elevations and subsidences exhibited in ocean-basins, islands, continents, table-lands, mountain-chains, and all those formations which are distinguished as volcanic, geologists now regard as modifications of the Earth’s crust produced by the still-molten matter occupying its interior. However untenable may be the details of M. Elie de Beaumont’s theory, there is good reason to accept the general proposition that the disruptions and variations of level which take place at intervals on the terrestrial surface, are due to the progressive collapse of the Earth’s solid envelope upon its cooling and contracting nucleus. Even supposing that volcanic eruptions, extrusions of igneous rock, and upheaved mountain-chains, could be otherwise satisfactorily accounted for, which they cannot; it would be impossible otherwise to account for those wide-spread elevations and depressions whence continents and oceans result. The conclusion to be drawn is, then, that the forces displayed in these so-called igneous changes, are derived positively or negatively from the unexpended heat of the Earth’s interior. Such phenomena as the fusion or agglutination of sedimentary deposits, the warming of springs, the sublimation of metals into the fissures where we find them as ores, may be regarded as positive results of this residuary heat; while fractures of strata and alterations of level are its negative results, since they ensue on its escape. The original cause of all these effects is still, however, as it has been from the first, the gravitating movement of the Earth’s matter towards the Earth’s centre; seeing that to this is due both the internal heat itself and the collapse which takes place as it is radiated into space.

When we inquire under what forms previously existed the force which works out the geological changes classed as aqueous, the answer is less obvious. The effects of rain, of rivers, of winds, of waves, of marine currents, do not manifestly proceed from one general source. Analysis, nevertheless, proves to us that they have a common genesis. If we ask, – Whence comes the power of the river-current, bearing sediment down to the sea? the reply is, – The gravitation of water throughout the tract which this river drains. If we ask, – How came the water to be dispersed over this tract? the reply is, – It fell in the shape of rain. If we ask, – How came the rain to be in that position whence it fell? the reply is, – The vapour from which it was condensed was drifted there by the winds. If we ask, – How came this vapour to be at that elevation? the reply is, – It was raised by evaporation. And if we ask, – What force thus raised it? the reply is, – The sun’s heat. Just that amount of gravitative force which the sun’s heat overcame in raising the atoms of water, is given out again in the fall of those atoms to the same level. Hence the denudations effected by rain and rivers, during the descent of this condensed vapour to the level of the sea, are indirectly due to the sun’s heat. Similarly with the winds that transport the vapours hither and thither. Consequent as atmospheric currents are on differences of temperature (either general, as between the equatorial and polar regions, or special as between tracts of the Earth’s surface of unlike physical characters) all such currents are due to that source from which the varying quantities of heat proceed. And if the winds thus originate, so too do the waves raised by them on the sea’s surface. Whence it follows that whatever changes waves produce – the wearing away of shores, the breaking down of rocks into shingle, sand, and mud – are also traceable to the solar rays as their primary cause. The same may be said of ocean-currents. Generated as the larger ones are by the excess of heat which the ocean in tropical climates continually acquires from the Sun; and generated as the smaller ones are by minor local differences in the quantities of solar heat absorbed; it follows that the distribution of sediment and other geological processes which these marine currents effect, are affiliable upon the force which the sun radiates. The only aqueous agency otherwise originating is that of the tides – an agency which, equally with the others, is traceable to unexpended astronomical motion. But making allowance for the changes which this works, we reach the conclusion that the slow wearing down of continents and gradual filling up of seas, by rain, rivers, winds, waves, and ocean-streams, are the indirect effects of solar heat.

Thus the implication forced on us by the doctrine of correlation, that the forces which have moulded and re-moulded the Earth’s crust must have pre-existed under some other shape, is quite in conformity with the theory of Evolution; since this pre-supposes certain forces that are both adequate to the results, and cannot be expended without producing the results. We see that while the geological changes classed as igneous, result from the still-progressing motion of the Earth’s substance to its centre of gravity; the antagonistic changes classed as aqueous, result from the still-progressing motion of the Sun’s substance towards its centre of gravity – a motion which, transformed into heat and radiated to us, is here re-transformed, directly into motions of the gaseous and liquid matters on the Earth’s surface, and indirectly into motions of the solid matters.

§ 81. That the forces exhibited in vital actions, vegetal and animal, are similarly derived, is so obvious a deduction from the facts of organic chemistry, that it will meet with ready acceptance from readers acquainted with these facts. Let us note first the physiological generalizations; and then the generalizations which they necessitate.

Plant-life is all directly or indirectly dependant on the heat and light of the sun – directly dependant in the immense majority of plants, and indirectly dependant in plants which, as the fungi, flourish in the dark: since these, growing as they do at the expense of decaying organic matter, mediately draw their forces from the same original source. Each plant owes the carbon and hydrogen of which it mainly consists, to the carbonic acid and water contained in the surrounding air and earth. The carbonic acid and water must, however, be decomposed before their carbon and hydrogen can be assimilated. To overcome the powerful affinities which hold their elements together, requires the expenditure of force; and this force is supplied by the Sun. In what manner the decomposition is effected we do not know. But we know that when, under fit conditions, plants are exposed to the Sun’s rays, they give off oxygen and accumulate carbon and hydrogen. In darkness this process ceases. It ceases too when the quantities of light and heat received are greatly reduced, as in winter. Conversely, it is active when the light and heat are great, as in summer. And the like relation is seen in the fact that while plant-life is luxuriant in the tropics, it diminishes in temperate regions, and disappears as we approach the poles. Thus the irresistible inference is, that the forces by which plants abstract the materials of their tissues from surrounding inorganic compounds – the forces by which they grow and carry on their functions, are forces that previously existed as solar radiations.

 

That animal life is immediately or mediately dependant on vegetal life is a familiar truth; and that, in the main, the processes of animal life are opposite to those of vegetal life is a truth long current among men of science. Chemically considered, vegetal life is chiefly a process of de-oxidation, and animal life chiefly a process of oxidation: chiefly, we must say, because in so far as plants are expenders of force for the purposes of organization, they are oxidizers (as is shown by the exhalation of carbonic acid during the night); and animals, in some of their minor processes, are probably de-oxidizers. But with this qualification, the general truth is that while the plant, decomposing carbonic acid and water and liberating oxygen, builds up the detained carbon and hydrogen (along with a little nitrogen and small quantities of other elements elsewhere obtained) into branches, leaves, and seeds; the animal, consuming these branches, leaves, and seeds, and absorbing oxygen, recomposes carbonic acid and water, together with certain nitrogenous compounds in minor amounts. And while the decomposition effected by the plant, is at the expense of certain forces emanating from the sun, which are employed in overcoming the affinities of carbon and hydrogen for the oxygen united with them; the recomposition effected by the animal, is at the profit of these forces, which are liberated during the combination of such elements. Thus the movements, internal and external, of the animal, are re-appearances in new forms of a power absorbed by the plant under the shape of light and heat. Just as, in the manner above explained, the solar forces expended in raising vapour from the sea’s surface, are given out again in the fall of rain and rivers to the same level, and in the accompanying transfer of solid matters; so, the solar forces that in the plant raised certain chemical elements to a condition of unstable equilibrium, are given out again in the actions of the animal during the fall of these elements to a condition of stable equilibrium.

Besides thus tracing a qualitative correlation between these two great orders of organic activity, as well as between both of them and inorganic agencies, we may rudely trace a quantitative correlation. Where vegetal life is abundant, we usually find abundant animal life; and as we advance from torrid to temperate and frigid climates, the two decrease together. Speaking generally, the animals of each class reach a larger size in regions where vegetation is abundant, than in those where it is sparse. And further, there is a tolerably apparent connexion between the quantity of energy which each species of animal expends, and the quantity of force which the nutriment it absorbs gives out during oxidation.

Certain phenomena of development in both plants and animals, illustrate still more directly the ultimate truth enunciated. Pursuing the suggestion made by Mr. Grove, in the first edition of his work on the “Correlation of the Physical Forces,” that a connexion probably exists between the forces classed as vital and those classed as physical, Dr. Carpenter has pointed out that such a connexion is clearly exhibited during incubation. The transformation of the unorganized contents of an egg into the organized chick, is altogether a question of heat: withhold heat and the process does not commence; supply heat and it goes on while the temperature is maintained, but ceases when the egg is allowed to cool. The developmental changes can be completed only by keeping the temperature with tolerable constancy at a definite height for a definite time; that is – only by supplying a definite quantity of heat. In the metamorphoses of insects we may discern parallel facts. Experiments show not only that the hatching of their eggs is determined by temperature, but also that the evolution of the pupa into the imago is similarly determined; and may be immensely accelerated or retarded according as heat is artificially supplied or withheld. It will suffice just to add that the germination of plants presents like relations of cause and effect – relations so similar that detail is superfluous.

Thus then the various changes exhibited to us by the organic creation, whether considered as a whole, or in its two great divisions, or in its individual members, conform, so far as we can ascertain, to the law of correlation. Where, as in the transformation of an egg into a chick, we can investigate the phenomena apart from all complications, we find that the re-arrangement of parts which constitutes evolution, involves expenditure of a pre-existing force. Where it is not, as in the egg or the chrysalis, merely the change of a fixed quantity of matter into a new shape, but where, as in the growing plant or animal, we have an incorporation of matter existing outside, there is still a pre-existing external force at the cost of which this incorporation is effected. And where, as in the higher division of organisms, there remain over and above the forces expended in organization, certain surplus forces expended in movement, these too are indirectly derived from this same pre-existing external force.

§ 82. Even after all that has been said in the foregoing part of this work, many will be alarmed by the assertion, that the forces which we distinguish as mental, come within the same generalization. Yet there is no alternative but to make this assertion: the facts which justify, or rather which necessitate it, being abundant and conspicuous. They fall into the following groups.

All impressions from moment to moment made on our organs of sense, stand in direct correlation with physical forces existing externally. The modes of consciousness called pressure, motion, sound, light, heat, are effects produced in us by agencies which, as otherwise expended, crush or fracture pieces of matter, generate vibrations in surrounding objects, cause chemical combinations, and reduce substances from a solid to a liquid form. Hence if we regard the changes of relative position, of aggregation, or of chemical state, thus arising, as being transformed manifestations of the agencies from which they arise; so must we regard the sensations which such agencies produce in us, as new forms of the forces producing them. Any hesitation to admit that, between the physical forces and the sensations there exists a correlation like that between the physical forces themselves, must disappear on remembering how the one correlation, like the other, is not qualitative only but quantitative. Masses of matter which, by scales or dynamometer, are shown to differ greatly in weight, differ as greatly in the feelings of pressure they produce on our bodies. In arresting moving objects, the strains we are conscious of are proportionate to the momenta of such objects as otherwise measured. Under like conditions the impressions of sounds given to us by vibrating strings, bells, or columns of air, are found to vary in strength with the amount of force applied. Fluids or solids proved to be markedly contrasted in temperature by the different degrees of expansion they produce in the mercurial column, produce in us correspondingly different degrees of the sensation of heat. And similarly unlike intensities in our impressions of light, answer to unlike effects as measured by photometers.

Besides the correlation and equivalence between external physical forces, and the mental forces generated by them in us under the form of sensations, there is a correlation and equivalence between sensations and those physical forces which, in the shape of bodily actions, result from them. The feelings we distinguish as light, heat, sound, odour, taste, pressure, &.c, do not die away without immediate results; but are invariably followed by other manifestations of force. In addition to the excitements of secreting organs, that are in some cases traceable, there arises a contraction of the involuntary muscles, or of the voluntary muscles, or of both. Sensations increase the action of the heart – slightly when they are slight; markedly when they are marked; and recent physiological inquiries imply not only that contraction of the heart is excited by every sensation, but also that the muscular fibres throughout the whole, vascular system, are at the same time more or less contracted. The respiratory muscles, too, are stimulated into greater activity by sensations. The rate of breathing is visibly and audibly augmented both by pleasurable and painful impressions on the nerves, when these reach any intensity. It has even of late been shown that inspiration becomes more frequent on transition from darkness into sunshine, – a result probably due to the increased amount of direct and indirect nervous stimulation involved. When the quantity of sensation is great, it generates contractions of the voluntary muscles, as well as of the involuntary ones. Unusual excitement of the nerves of touch, as by tickling, is followed by almost incontrollable movements of the limbs. Violent pains cause violent struggles. The start that succeeds a loud sound, the wry face produced by the taste of anything extremely disagreeable, the jerk with which the hand or foot is snatched out of water that is very hot, are instances of the transformation of feeling: into motion; and in these cases, as in all others, it is manifest that the quantity of bodily action is proportionate to the quantity of sensation. Even where from pride there is a suppression of the screams and groans expressive of great pain (also indirect results of muscular contraction), we may still see in the clenching of the hands, the knitting of the brows, and the setting of the teeth, that the bodily actions developed are as great, though less obtrusive in their results. If we take emotions instead of sensations, we find the correlation and equivalence equally manifest. Not only are the modes of consciousness directly produced in us by physical forces, re-transformable into physical forces under the form of muscular motions and the changes they initiate; but the like is true of those modes of consciousness which are not directly produced in us by the physical forces. Emotions of moderate intensity, like sensations of moderate intensity, generate little beyond excitement of the heart and vascular system, joined sometimes with increased action of glandular organs. But as the emotions rise in strength, the muscles of the face, body, and limbs, begin to move. Of examples may be mentioned the frowns, dilated nostrils, and stampings of anger; the contracted brows, and wrung hands, of grief; the smiles and leaps of joy; and the frantic struggles of terror or despair. Passing over certain apparent, but only apparent, exceptions, we see that whatever be the kind of emotion, there is a manifest relation between its amount, and the amount of muscular action induced: alike from the erect carriage and elastic step of exhilaration, up to the dancings of immense delight, and from the fidgetiness of impatience up to the almost convulsive movements accompanying great mental agony. To these several orders of evidence must be joined the further one, that between our feelings and those voluntary motions into which they are transformed, there comes the sensation of muscular tension, standing in manifest correlation with both – a correlation that is distinctly quantitative: the sense of strain varying, other things equal, directly as the quantity of momentum generated.

“But how,” it may be asked, “can we interpret by the law of correlation the genesis of those thoughts and feelings which, instead of following external stimuli, arise spontaneously? Between the indignation caused by an insult, and the loud sounds or violent acts that follow, the alleged connexion may hold; but whence come the crowd of ideas and the mass of feelings that expend themselves in these demonstrations? They are clearly not equivalents of the sensations produced by the words on the ears; for the same words otherwise arranged, would not have caused them. The thing said bears to the mental action it excites, much the same relation that the pulling of a trigger bears to the subsequent explosion – does not produce the power, but merely liberates it. Whence then arises this immense amount of nervous energy which a whisper or a glance may call forth?” The reply is, that the immediate correlates of these and other such modes of consciousness, are not to be found in the agencies acting on us externally, but in certain internal agencies. The forces called vital, which we have seen to be correlates of the forces called physical, are the immediate sources of these thoughts and feelings; and are expended in producing them. The proofs of this are various. Here are some of them. It is a conspicuous fact that mental action is contingent on the presence of a certain nervous apparatus; and that, greatly obscured as it is by numerous and involved conditions, a general relation may be traced between the size of this apparatus and the quantity of mental action as measured by its results. Further, this apparatus has a particular chemical constitution on which its activity depends; and there is one element in it between the amount of which and the amount of function performed, there is an ascertained connexion: the proportion of phosphorus present in the brain being the smallest in infancy, old age and idiotcy, and the greatest during the prime of life. Note next, that the evolution of thought and emotion varies, other things equal, with the supply of blood to the brain. On the one hand, a cessation of the cerebral circulation, from arrest of the heart’s action, immediately entails unconsciousness. On the other hand, excess of cerebral circulation (unless it is such as to cause undue pressure) results in an excitement rising finally to delirium. Not the quantity only, but also the condition of the blood passing through the nervous system, influences the mental manifestations. The arterial currents must be duly aerated, to produce the normal amount of cerebration. At the one extreme, we find that if the blood is not allowed to exchange its carbonic acid for oxygen, there results asphyxia, with its accompanying stoppage of ideas and feelings. While at the other extreme, we find that by the inspiration of nitrous oxide, there is produced an excessive, and indeed irrepressible, nervous activity. Besides the connexion between the development of the mental forces and the presence of sufficient oxygen in the cerebral arteries, there is a kindred connexion between the development of the mental forces and the presence in the cerebral arteries of certain other elements. There must be supplied special materials for the nutrition of the nervous centres, as well as for their oxidation. And how what we may call the quantity of consciousness, is, other things equal, determined by the constituents of the blood, is unmistakably seen in the exaltation that follows when certain chemical compounds, as alcohol and the vegeto-alkalies, are added to it. The gentle exhilaration which tea and coffee create, is familiar to all; and though the gorgeous imaginations and intense feelings of happiness produced by opium and hashish, have been experienced by few, (in this country at least,) the testimony of those who have experienced them is sufficiently conclusive. Yet another proof that the genesis of the mental energies is immediately dependent on chemical change, is afforded by the fact, that the effete products separated from the blood by the kidneys, vary in character with the amount of cerebral action. Excessive activity of mind is habitually accompanied by the excretion of an unusual quantity of the alkaline phosphates. Conditions of abnormal nervous excitement bring on analogous effects. And the “peculiar odour of the insane,” implying as it does morbid products in the perspiration, shows a connexion between insanity and a special composition of the circulating fluids – a composition which, whether regarded as cause or consequence, equally implies correlation of the mental and the physical forces. Lastly we have to note that this correlation too, is, so far as we can trace it, quantitative. Provided the conditions to nervous action are not infringed on, and the concomitants are the same, there is a tolerably constant ratio between the amounts of the antecedents and consequents. Within the implied limits, nervous stimulants and anæsthetics produce effects on the thoughts and feelings, proportionate to the quantities administered. And conversely, where the thoughts and feelings form the initial term of the relation, the degree of reaction on the bodily energies is great, in proportion as they are great: reaching in extreme cases a total prostration of physique.

 

Various classes of facts thus unite to prove that the law of metamorphosis, which holds among the physical forces, holds equally between them and the mental forces. Those modes of the Unknowable which we call motion, heat, light, chemical affinity, &c., are alike transformable into each other, and into those modes of the Unknowable which we distinguish as sensation, emotion, thought: these, in their turns, being directly or indirectly re-transformable into the original shapes. That no idea or feeling arises, save as a result of some physical force expended in producing it, is fast becoming a common place of science; and whoever duly weighs the evidence will see, that nothing but an overwhelming bias in favour of a pre-conceived theory, can explain its non-acceptance. How this metamorphosis takes place – how a force existing as motion, heat, or light, can become a mode of consciousness – how it is possible for aerial vibrations to generate the sensation we call sound, or for the forces liberated by chemical changes in the brain to give rise to emotion – these are mysteries which it is impossible to fathom. But they are not profounder mysteries than the transformations of the physical forces into each other. They are not more completely beyond our comprehension than the natures of Mind and Matter. They have simply the same insolubility as all other ultimate questions. We can learn nothing more than that here is one of the uniformities in the order of phenomena.

§ 83. Of course if the law of correlation and equivalence holds of the forces we class as vital and mental, it must hold also of those which we class as social. Whatever takes place in a society is due to organic or inorganic agencies, or to a combination of the two – results either from the undirected physical forces around, from these physical forces as directed by men, or from the forces of the men themselves. No change can occur in its organization, its modes of activity, or the effects it produces on the face of the Earth, but what proceeds, mediately or immediately, from these. Let us consider first the correlation between the phenomena which societies display, and the vital phenomena.

Social power and life varies, other things equal, with the population. Though different races, differing widely in their fitness for combination, show us that the forces manifested in a society are not necessarily proportionate to the number of people; yet we see that under given conditions, the forces manifested are confined within the limits which the number of people imposes. A small society, no matter how superior the character of its members, cannot exhibit the same quantity of social action as a large one. The production and distribution of commodities must be on a comparatively small scale. A multitudinous press, a prolific literature, or a massive political agitation, is not possible. And there can be but a small total of results in the shape of art-products and scientific discoveries. The correlation of the social with the physical forces through the intermediation of the vital ones, is, however, most clearly shown in the different amounts of activity displayed by the same society according as its members are supplied with different amounts of force from the external world. In the effects of good and bad harvests, we yearly see this relation illustrated. A greatly deficient yield of wheat is soon followed by a diminution of business. Factories are worked half-time, or close entirely; railway traffic falls; retailers find their sales much lessened; house-building is almost suspended; and if the scarcity rises to famine, a thinning of the population still more diminishes the industrial vivacity. Conversely, an unusually abundant harvest, occurring under conditions not otherwise unfavourable, both excites the old producing and distributing agencies and sets up new ones. The surplus social energy finds vent in speculative enterprises. Capital seeking investment carries out inventions that have been lying unutilized. Labour is expended in opening new channels of communication. There is increased encouragement to those who furnish the luxuries of life and minister to the æsthetic faculties. There are more marriages, and a greater rate of increase in population. Thus the social organism grows larger, more complex, and more active. When, as happens with most civilized nations, the whole of the materials for subsistence are not drawn from the area inhabited, but are partly imported, the people are still supported by certain harvests elsewhere grown at the expense of certain physical forces. Our own cotton-spinners and weavers supply the most conspicuous instance of a section in one nation living, in great part, on imported commodities, purchased by the labour they expend on other imported commodities. But though the social activities of Lancashire are due chiefly to materials not drawn from our own soil, they are none the less evolved from physical forces elsewhere stored up in fit forms and then brought here.