Квантовый мир. Невероятная теория в самом сердце мироздания

Tekst
Autor:
2
Recenzje
Przeczytaj fragment
Oznacz jako przeczytane
Czcionka:Mniejsze АаWiększe Aa

Запутанные алмазы

В этом эксперименте Алиса и Боб сидели в двух лабораториях, которые разделяли 1,3 километра. Свету требуется 4,27 микросекунды, чтобы пройти это расстояние, а измерение занимало только 3,7 микросекунды, так что дальность была достаточной, чтобы закрыть лазейку местоположения.

В каждой лаборатории был алмаз, содержащий электрон, который обладал особым свойством – спином. Члены команды ударяли по алмазам микроволновыми импульсами, создаваемыми случайным образом, что заставляло каждый из них испускать фотон, запутанный со спином электрона. Эти фотоны затем отправляли в следующий пункт, точку C между Алисой и Бобом, где третий детектор отмечал время их прибытия.

Если бы фотоны пришли от Алисы и Боба точно в одно и то же время, то передали бы свою запутанность спинам в обоих алмазах, и электроны были бы запутаны вдоль прямой, соединяющей две лаборатории, – это как раз то, что нам нужно для проверки неравенств Белла. К тому же спины электронов постоянно отслеживали, а уровень качества детекторов позволял закрыть лазейку обнаружения.

Но недостаток эксперимента заключается в том, что два фотона очень редко приходят в точку C одновременно – лишь несколько совпадений приходов в час. Команда провела 245 измерений, так что ожидание было долгим. Результат был однозначным: в лабораториях были обнаружены спины с намного более высокой корреляцией, чем позволил бы локальный реализм. Таинственный мир квантовой механики – это наш мир (см. рис. 2.4).

Рис. 2.4. Первый свободный от лазеек эксперимент, проведенный для доказательства квантовой таинственности.


Остается одна лазейка, за которую могут зацепиться локальные реалисты, но исключить ее не смогут никакие эксперименты в принципе. Что если между случайными микроволновыми генераторами и детекторами имеется нечто вроде связи? Тогда возможно, что Алиса и Боб считают себя свободными в выборе настроек своего оборудования, но скрытые параметры интерферируют с их выбором и сводят на нет проверку неравенств Белла.

Команда Хансона отмечает, что это возможно, но также предполагает, что не в данном случае. В других опытах предлагается создание случайных чисел на основе фотонов, прилетающих от далеких квазаров, что приводит к промежуткам в миллиарды световых лет.

Ничего из перечисленного в конечном счете не помогает. Предположим, что Вселенная каким-то образом полностью предопределена и порхание каждого фотона неизменно, словно высечено на камне c незапамятных времен. В этом случае ни у кого никогда не было бы выбора, так что это не то, о чем экспериментаторам реально стоит волноваться: если Вселенная предопределена, полное отсутствие свободы означает, что у нас есть заботы поважнее.

Что бы Эйнштейн подумал об этих результатах? К сожалению, он умер до того, как Белл представил свои неравенства, так что мы не узнаем, изменило ли бы дальнейшее развитие событий его мнение, но возможно, Эйнштейн бы восхитился теми действиями, которые совершили люди, чтобы доказать его неправоту.

Где эта свободная от лазеек проверка оставляет нас?

Эта свободная от лазеек проверка квантовой таинственности вводит нас в философскую дилемму. Неужели у нас нет свободной воли и что-то предопределяет, какие измерения мы проведем? Это не лучший вариант. Реальны ли свойства квантовых частиц и, следовательно, реально ли вообще все или существует только как результат нашего восприятия? Такая точка зрения более популярна, но вряд ли мы далеко с ней продвинемся.

Или действительно существует воздействие, распространяющееся быстрее света? В 2008 году швейцарский физик Николас Гизин и его коллеги из Женевского университета (Швейцария) показали, что при соблюдении реальности и свободы скорость переноса квантовых состояний между запутанными фотонами, удерживаемыми в двух деревнях на расстоянии в 18 километров, будет более чем в 10 миллионов раз выше скорости света.

Есть ли предел размеров, при котором объект перестает вести себя как волна?

Согласно законам квантовой механики корпускулярно-волновой дуализм и квантовая суперпозиция распространяются не только на микроскопический мир электронов и атомов, но также и на макроскопические объекты.

Граница между квантовым и классическим повседневным мирами размывалась годами. В 1999 году Антон Цайлингер и его коллеги из Венского университета (Австрия) показали, что фуллерены – молекулы из 60 атомов – ведут себя как волны, когда проходят через дифракционные решетки. А в 2003 году той же группой был проведен трюк с тетрафенилпорфирином – большой молекулой, связанной с хлорофиллом, установившей новый рекорд самого тяжелого объекта, продемонстрировавшего корпускулярно-волновой дуализм.

Квантовые эффекты ворвались также в область объектов, различимых невооруженным глазом. В 2010 году исследователи заставили одновременно и колебаться, и не колебаться сверхохлажденную металлическую полоску длиной 0,06 мм, приведя ее в квантовую суперпозицию состояний. В настоящее время рекорд принадлежит облаку из 10 000 ионов рубидия. Есть ли предел того, насколько большим может быть объект и при этом обладать квантовыми эффектами? Ничего в квантовой механике не говорит о существовании этого предела, но чем больше атомов имеет объект, тем более вероятно, что они взаимодействуют друг с другом и своим окружением, разрушая хрупкие квантовые эффекты.

Одной из основных целей, виднеющихся на горизонте, является суперпозиция объектов на масштабах в миллион атомов, говорит Влатко Ведрал, квантовый физик из Оксфордского университета: «Вот тут происходит нечто магическое. Это масштаб, на котором начинается жизнь». На его взгляд, ключевым экспериментом стала бы стрельба живыми организмами, например вирусами по двум щелям при контролируемых условиях, поскольку согласно одной из интерпретаций квантовой механики живые системы приводят к коллапсу квантовых суперпозиций. «Держу пари, что вирус также является полностью квантово-механическим, – говорит он. – Выделите мне достаточное финансирование, и, вероятно, я смогу заставить проинтерферировать все, что пожелаете».

3. Что все это означает?

После лобового столкновения с квантовой таинственностью возникает соблазн привести печально известную цитату лауреата Нобелевской премии, физика Ричарда Фейнмана (1918–1988): «Квантовую механику никто не понимает». Увы, это действительно довольно близко к истине, ведь, как классические существа, мы не готовы видеть основополагающую квантовую реальность. К ее пониманию можно прийти дорогой ценой – например, приняв существование параллельных вселенных.

Введение в мультивселенную

В 1911 году в Брюсселе (Бельгия) прошла первая международная конференция по физике. Темами для обсуждения стали взаимодействие со странной новой квантовой теорией и возможность ее примирения с нашим повседневным опытом.


Над решением этих вопросов физики бьются и сегодня. Нет ни одного эксперимента, чьи результаты когда-либо расходились с предсказаниями квантовой теории, и мы можем быть уверены, что она представляет собой хороший способ описания устройства Вселенной в самых малых масштабах. Таким образом, у нас остается лишь одна проблема: что это значит?

Утверждение о том, что мы понимаем квантовую механику, может дорого стоить, например принятия существования параллельных вселенных. В этой картине вероятностная волновая функция, описывающая квантовые объекты, не «коллапсирует» в классическую определенность каждый раз, когда вы проводите измерения над ними; реальность просто расщепляется на столько параллельных миров, сколько имеется возможностей измерения. Один из них уносит с собой вас и реальность, в который вы живете. По словам Ричарда Фейнмана: «“Парадокс” – это всего лишь конфликт между реальностью и предчувствием того, чем должна быть реальность».

Физики пытаются ответить на эти вопросы с помощью «интерпретаций» – философских рассуждений о том, что лежит за квантовой теорией, полностью соответствующих опытам. Никакая другая теория в науке не имеет так много взглядов на нее (см. рис. 3.1). Почему так получилось? И достигнет ли главенства какой-то из них?

Возьмем, например, копенгагенскую интерпретацию, введенную датским физиком Нильсом Бором. Она гласит, что любая попытка рассуждать о положении электрона, например внутри атома, бессмысленна без проведения его измерения. Только когда мы взаимодействуем с электроном при помощи не-квантового, или классического, устройства, пытаясь наблюдать его, он действительно принимает какие-то черты того, что мы назвали бы физическим свойством, и поэтому становится частью реальности. С ее принципами неопределенности и парадоксами измерений копенгагенская интерпретация сводится к признанию того, что любая наша попытка найти общий язык с квантовой реальностью уменьшает ее до неглубокой классической проекции полного квантового богатства.


Рис. 3.1. «Зоопарк» различных интерпретаций квантовой теории.


Кроме того, есть многомировая интерпретация, где квантовая странность объясняется тем, что все существует одновременно в нескольких мириадах параллельных вселенных. Или вы, наверно, предпочли бы интерпретацию де Бройля – Бома, в которой квантовая теория рассматривается как неполная: нам не хватает некоторых скрытых свойств, придающих всему смысл.



Есть еще очень много интерпретаций, например интерпретация Гирарди – Римини – Вебера, транзакционная (у которой есть частицы, путешествующие назад во времени), интерпретация британского физика Роджера Пенроуза с коллапсом, вызванным гравитацией, и модальная. За прошедшие 100 лет квантовый зоопарк стал переполненным и шумным местом, и пока нет аргументов, окончивших бы споры о сути квантовой механики. Тем не менее, кажется, лишь немногие из этих интерпретаций что-то значат в научных кругах.

 

Чудесный Копенгаген

Самая популярная из всех – это копенгагенская интерпретация Бора. Ее популярность во многом объясняется тем, что физики в большинстве своем не хотят утруждать себя философией. Вопросы о том, что именно представляет собой измерение или почему оно может вызывать изменения в ткани реальности, могут не приниматься во внимание в пользу простого получения полезного ответа от квантовой теории.

Вот почему беспрекословное следование копенгагенской интерпретации иногда называют интерпретацией «Заткнись и считай!». Тем не менее у этого подхода есть пара недостатков. Он никогда не расскажет нам о фундаментальной природе реальности, ведь для этого требуется искать те места, где квантовая теория терпит неудачу, а не те, где она преуспевает. Работа в добровольном заключении также означает, что появление новых приложений квантовой теории маловероятно. Однако многочисленные точки зрения на квантовую механику могут быть стимулом для новых идей, и самое наглядное доказательство этому – область квантовой информации.

В основе этой области лежит явление запутанности, когда информация о свойствах набора квантовых частиц присваивается всем этим частицам. В результате измерение одной частицы мгновенно повлияет на свойства ее партнеров по запутанности, как бы далеко они друг от друга ни находились.

Идея запутанности кажется настолько странной, что физик Джон Белл разработал мысленный эксперимент для выяснения, может ли она проявляться в реальном мире (см. главу 2). Когда его проведение стало возможным, опыт доказал, что может, и сообщил многое о тонкостях квантовых измерений. Данный результат заложил основы квантовых вычислений, в которых одно измерение может поведать вам о тысячах или даже миллионах вычислений, проведенных параллельно запутанными частицами, а также квантовой криптографии, защищающей информацию при помощи самой природы квантовых измерений (см. главу 4).

По вполне понятным причинам обе эти технологии привлекли внимание правительства и индустрии, стремящихся внедрять в свою деятельность лучшие разработки – и препятствовать их попаданию в чужие руки. Физики, однако, больше заинтересованы в том, что эти явления говорят нам о природе реальности. По-видимому, одним из следствий экспериментов с квантовой информацией является то, что информация, содержащаяся в квантовых частицах, находится в основе реальности.

Последователи копенгагенской интерпретации рассматривают квантовые системы как носители информации, а в измерениях с использованием классической аппаратуры не видят ничего особенного – это всего лишь способ регистрации изменений в информационном содержании системы. Этот новый фокус на информацию как на фундаментальный компонент реальности также породил предложение, что Вселенная – это громадный квантовый компьютер.

Однако, несмотря на все шаги к цели, сделанные благодаря копенгагенской интерпретации, множество физиков относится к ней критично. Отчасти это объясняется тем, что она требует чего-то вроде искусственного разграничения между крошечными квантовыми системами и классической аппаратурой, или наблюдателями, проводящими их измерения. Рассмотрение природы вещей в масштабах Вселенной также обеспечило критиков копенгагенской интерпретации аргументами. Если процесс измерения, проводимого классическим наблюдателем, является основополагающим для построения реальности, которую мы наблюдаем, то что провело наблюдения, ставшие основой для появления содержимого всей Вселенной?


Рис. 3.2. Многомировая интерпретация квантовой механики, предлагающая набор постоянно разветвляющихся вселенных.


Много миров

Сложность, которую порождает этот вопрос, сегодня является причиной более понимающего отношения космологов к интерпретации, созданной в конце 50-х годов XX века в Принстонском университете физиком Хью Эвереттом. Его многомировая интерпретация квантовой механики (см. рис. 3.2) предполагает, что реальность не привязана к понятию измерения. Вместо этого мириады разных возможностей, присущих квантовой системе, проявляются каждая в своей Вселенной. Дэвид Дойч, физик Оксфордского университета и человек, разработавший проект первого квантового компьютера, утверждает, что сейчас мы можем рассуждать о работе такого компьютера только с позиции этого множества вселенных (см. интервью в главе 5). Для него никакая другая интерпретация не имеет смысла.

Но и многомировую интерпретацию не обошла стороной критика. Философ науки Тим Модлин, работающий в Ратгерском университете штата Нью-Джерси, восхищается ее попыткой лишить наблюдение статуса особого процесса. Однако в то же время он не уверен, что многие миры являются хорошей базой для объяснения того, почему некоторые квантовые исходы более вероятны, чем другие.

Когда квантовая теория предсказывает, что один результат измерения в 10 раз вероятнее другого, это всегда подтверждается повторными экспериментами. Согласно Модлину, многие миры свидетельствуют о том, что реализуются все возможные исходы, учитывая множественность миров, но это не объясняет, почему наблюдатели по-прежнему видят самый вероятный исход.

Незаурядный Эверетт

Многомировая интерпретация квантовой механики Хью Эверетта появилась в результате пьянки, оказавшей, наверное, наибольшее влияние на мир среди всех вечеринок. Однажды вечером 1954 года аспирант Хью Эверетт пил херес со своими друзьями в общежитии Принстонского университета, когда к нему пришла идея о том, что квантовые эффекты приводят к постоянному расщеплению Вселенной. Он разработал ее для своей кандидатской диссертации – и сформировалась теория.

Но ведущие физики времен Эверетта, в частности Нильс Бор, не смогли ее принять. Эверетту нужно было опубликовать упрощенную версию своей идеи. Обиженный до глубины души, он оставил физику и вступил в рабочую группу Пентагона, рассчитывающую потенциальное число погибших в случае ядерной войны. Жизнь Эверетта была увлекательной и трагичной. Он был убежденным атеистом и перед своей смертью, а тогда ему был 51 год, оставил жене Нэнси указание выбросить его прах вместе с мусором.

Дойч считает, что совсем недавно эти проблемы были решены, однако его аргументы малопонятны, и заявление физика так никого и не убедило. Еще сложнее прокомментировать то, что сторонники многих миров называют «замечанием недоверчивого взгляда». Очевидным следствием многомировой интерпретации является наличие множества копий вас – и что Элвис по-прежнему поет в Вегасе другой Вселенной. Немногие люди могут принять такую идею, но это может быть лишь вопросом степени привыкания к этой множественности нас и других.

По мнению Дойча, это случится, когда начнут использоваться технологии, основанные на непривычных сторонах квантового мира. Как только у нас появятся квантовые компьютеры, которые решают задачи нахождением во множестве состояний одновременно, эти миры мы сможем воспринимать только как физическую реальность.

To koniec darmowego fragmentu. Czy chcesz czytać dalej?