Collins New Naturalist Library

Tekst
0
Recenzje
Książka nie jest dostępna w twoim regionie
Oznacz jako przeczytane
Czcionka:Mniejsze АаWiększe Aa

Animal populations cannot be directly compared even with the supposedly most primitive of human ones. Moreover, unequipped with any cultural tradition and means of communication, some special mechanism would have to be found to account for what amounts to altruistic behaviour. The Darwinian viewpoint is that if two animals (of the same or different species) are in competition, the one able to maintain the highest reproductive output must succeed at the expense of the other, all else being equal. This is the meaning of natural selection, which amounts to individual selection. What then would prevent the genes of parents which practise restraint from being at first swamped and then lost in competition with less socially inclined individuals? Wynne-Edwards surmounted this problem of explaining how individuals could acquire genes which cause them to behave in socially advantageous ways, sometimes at their own expense, by invoking the concept of group selection. In other words, in many situations survival of the group is more important than survival of the individual. Without entering into detail it must be said that the genetical basis for group selection is very restricted, and it can only be shown to be feasible in small isolated populations (birds do not satisfy the requirements of isolation as envisaged by geneticists) or in those, such as the social insects, where numerous genetically identical individuals are produced from one female, for which the term kin-selection is more appropriate. It seems to me that all the examples given by Wynne-Edwards can be answered (or will be when knowledge accumulates) more satisfactorily by individual selection and that to introduce group selection is unnecessary. This applies to two situations which I have studied closely – the peck order in birds and stress disease. I myself, therefore, reject the concept of an optimum population in this sense, together with the view that animals impose their own control over population increase. I have discussed the subject at some length because it defines my approach to the subject of applied ornithology. So far as reproduction is concerned I fully support Lack’s thesis that the reproductive rate has evolved as the highest possible; selective disadvantages follow from the production of more or fewer young than the optimum number. Disadvantages which accrue from overproduction include reduced survival chances for the offspring because they are undernourished, or impairment of the parents’ health; underproduction leads to a failure in intra-specific competition with more fecund individuals.

As most birds produce a large excess of young, the total post-breeding population increases considerably, two-fold in the wood-pigeon, up to six-fold in the great tit, but by less than half in the fulmar. Various mortality factors, including disease, predation and starvation, now remove surplus individuals so that a balance with environmental resources is achieved, and a pattern of sharp fluctuations within each twelve-month period is superimposed on more subtle changes in the breeding population from one year to another. Lack has argued, and again I agree with his views, that the food supply is usually, but not invariably, the most important factor affecting these annual fluctuations in birds. While food could ultimately be the most important factor in all cases, other agencies, for instance predators, may hold numbers below the level which would be imposed by food shortage. The most important fact to appreciate from the viewpoint of economic ornithology is that causes of death are effective until the population is in balance with the environment, and in the absence of one such factor another will take its place. Conversely mortality factors are not usually additive – in the sense that two together do not decrease numbers more than one alone. The degree of stability seen in a population will, therefore, depend primarily on that of the environment and not on any essential characteristic of the population. By environment we not only mean the food supply but include all the other components, biotic and physical, which may interact to cause competition and mortality, directly or indirectly.

Blank, Southwood and Cross have recently shown in a neat but semi-mathematical way how the various causes of mortality contribute to the regulation of a partridge population on a Hampshire estate which was studied from 1949–59. I shall illustrate less elegantly certain aspects by using as an example another partridge population living on a Norfolk estate, for which details of annual fluctuations in numbers have been given by Middleton and Huband (Table 1). Following breeding, numbers increase over tenfold but there immediately follows a period during which it is mostly the young which are lost, so that from a post-breeding average of nearly ten chicks to each adult the ratio falls to only 1.5 per adult by August, most of this chick loss occurring in the first few weeks of life. Jenkins (1961) had earlier claimed that this heavy loss of young, which is particularly heavy in cool, wet and windy summer weather, was the main variable determining the number of partridges later available for shooting. This was confirmed by Blank et al., who emphasised chick loss as the major contributor towards the total mortality occurring each year in partridges, and as the most important determinant of the September ratio of old to young. They found that about half of the variation in total mortality was due to fluctuations in chick loss, but that about half this chick mortality was unrelated to the size of the population at hatching. This means that the survival of chicks was partly responsible for regulating the autumn population (in the sense that autumn numbers were largely governed by how many young survived). However, because this survival was only partly determined by population size there was a margin of production which caused autumn numbers to fluctuate partly independently of population density. Thus 35% of the year-to-year fluctuation in the September population resulted from variations in chick mortality. In further studies Southwood and Gross were able to show that 94% of the variation in breeding success (they used the ratio of old to young birds in September as a measure of breeding success, this also being a measure of chick survival as explained above) could be accounted for by variations in general insect abundance in cereal and forage crops in June. They measured insect abundance by the use of suction traps and showed that the insects sampled were in the main those eaten by partridges, judged by analysing the crop contents of chicks.

The number of partridges finally surviving to breed in March depends on mortality factors operating in the winter, shooting being the most important. Shooting is contrived to operate in a density-dependent manner with proportionately more birds being shot when numbers are high, but this is, of course, an artificial situation which masks the effect of natural regulatory agents. These last are likely to reside in the nature of the environment, the amount and type of cover which in turn influence territory size and may result in surplus birds emigrating. They are considered in greater detail below (see here) as they are involved as factors determining long-term changes in population size as distinct from annual fluctuations. To summarise, variations in chick survival dependent on arthropod food supplies are responsible for the marked ups and downs of partridge numbers from year to year. Density-related variations in chick survival, together with density-dependent winter losses, are responsible for keeping the spring breeding population within relatively narrow bounds from one year to another. Nevertheless, there has been a general long-term decline in this level which we shall consider below. It is to be noted that pre-hatching factors that influence the viability of eggs (the ability of the female to lay down yolk reserves could depend on spring food supplies and influence the viability of any eggs she laid), the hatching success of eggs, or any other cause of mortality, were not related to population size nor to variations in total mortality.

For the figures given in Table 1 it can be ascertained that the number of adults breeding in any one year was not at all related to the number breeding in the next year. In other words, a small breeding population could be followed by an increase or decrease in the following season and vice versa. But, as Fig 3a. shows, the percentage change in breeding population from one year to the next was positively correlated with the autumn ratio of young/old, this in turn depending on the survival of young during the summer. In Norfolk this post-breeding chick loss was not correlated with the size of postbreeding population. Thus for two quite separate populations of the grey partridge the major cause of changes in numbers from one breeding season to the next has been the death-rate of young in the summer months; when this has been low, breeding numbers have tended to increase. Annual differences in reproductive output have not contributed to the changes. In the Hampshire study the summer loss was dependent on the total partridge density, and this supplied the necessary regulation to keep fluctuations within relatively narrow limits. In addition, as we shall find, both populations experience density-dependent losses in winter, but the absence of any density related loss in summer among the Norfolk birds could be associated with the long-term decline this population is experiencing. (Fig. 26, see here.) However, this last suggestion needs corroboration.


FIG. 3a. Percentage change in numbers of grey partridges between successive breeding seasons (abscissa) related to the corresponding autumn ratio of number of juveniles per adult (vertical scale). The correlation coefficient is statistically highly significant with r11 = 0.822.

 

3b. Percentage change in numbers of red-legged partridges between successive breeding seasons (abscissa), related to the corresponding autumn ratio of number of juveniles per adult (vertical scale). The correlation coefficient is not significant with r11 = 0.367. (Data derived from Table 1, from Middleton & Huband 1966).

Those mortality factors which, like chick loss, affect the size of the actual population, have been termed ‘key factors’ because they provide the key to predicting future population size, and are responsible for the year-to-year fluctuations in numbers. Perrins’s work on the great tit and my own studies of the wood-pigeon had earlier demonstrated that, in these two species, the major factor influencing changes in numbers from one year to the next is the survival rate of young after the breeding season, not the reproductive output itself nor the adult loss. Juvenile survival has been proved to depend on the food supply in the case of the wood-pigeon, and there is good reason to believe that it is also involved in the case of the great tit. However, for both these species, and unlike the Hampshire partridges, juvenile mortality is not seen to be density-dependent (at least not with the data so far available) and so some other cause of death could be responsible for regulating the populations, in the strict sense of the term. Lack suspected, for the great tit, that winter losses in relation to food supply may provide the critical density-dependent mortality, but emphasised the difficulty of proving this point. The problem is that food stocks and bird numbers vary considerably in different years. It may happen that if food stocks are high, bird numbers can be already low or high so that in neither case is any compensatory mortality required. It is difficult to isolate such effects, because in field studies it is not feasible to examine a variable number of the animals in relation to the same food supply each year. Failure to obtain the required data does not in this case invalidate the theory. It should be mentioned that a population will be regulated even though most of the deaths which occur are not related to density, provided that a small density-related adjustment is eventually applied. For instance, 6o%-8o% of losses could be suffered quite at random provided that after these had occurred there was a small loss, say in the order of under 10%, which was related to density. Indeed, this is the more usual situation.

On the Norfolk estate under discussion, red-legged partridges have increased over roughly the same period that the grey have declined (see Fig. 26 and Chapter 7, p. 176). It is interesting that, in contrast to the case of the grey partridge, the autumn ratio of young to old has not been the factor which determines the subsequent spring population of the red-legged partridge (Fig. 3b). There were some years when more red-legs were shot in the autumn and winter on the estate than were actually known to be there at the beginning of the shooting season, and numbers sometimes were higher in spring than in the autumn. Clearly, something has been happening which has enabled immigrant red-legs to move into the area from surrounding farms or marginal land (see here). This suggestion highlights another facet of population control which must be considered, namely the role of immigration and emigration. In the case of the wood-pigeon, juvenile birds which are surplus to the carrying capacity of the area in the autumn do not necessarily die but may emigrate to other areas – to marginal habitats or even to France. A proportion survive to return in the spring. Although winter numbers may be directly related to the food supply – for the death-rate depends on how many surplus birds exist in relation to this food supply (in a poor year for food there is not necessarily any mortality if the population is already in balance with food stocks) – the number in spring will depend not only on local survival but also on how many of the emigrants survive to return. These complications do not invalidate the contention that in any area at the worst season numbers are regulated by the food supply (for the rest of the year there may be more food than birds to eat it, especially if breeding cannot be accomplished quickly enough), but they add to the difficulty of demonstrating clear-cut relationships, and are sometimes introduced in ill-conceived arguments as evidence against the theory.

Fig. 4 shows the autumn population, in decreasing order of size, of the grey partridge on the Norfolk estate against the percentage of birds dying in winter, either as a result of shooting or through natural causes. Similar data for the red-leg are also detailed, these being plotted against the appropriate years for grey and not in their own size order. The figure demonstrates in the case of the grey partridge that mortality due to shooting and other factors combined is positively correlated with the size of the autumn population, that is, it is density-dependent. The percentage of birds shot is even more strongly correlated with the numbers available for shooting and is also correlated with the total mortality. In contrast, natural mortality is not correlated with autumn numbers nor with shooting loss. That death by shooting should be adjusted to the autumn population is to be expected, since the people involved determine their activities according to the prospects; in years when autumn numbers are small, with a low young to old ratio, shooting is voluntarily abolished or curtailed. This attitude is mistaken for the simple reason that, in spite of shooting, additional animals have in any case to be lost to ensure stability in the spring, and if none are shot more disappear through other causes. This is well shown in Fig. 4 for the year 1954 when little or no shooting occurred and the level of natural mortality was raised. As a result the death-rate was at virtually the same level as it was in 1952 and 1955, when extensive shooting took place. Although enough animals are shot to ensure a density-dependent controlling effect on the winter population, this is only so because shooting obscures other causes of death. Because shooting may actually account for deaths it is not the reason why these occur: they would also occur in the absence of shooting. Jenkins reached this same conclusion for partridges he studied on Lord Rank’s estate at Micheldever in Hampshire, and he and his colleagues (Jenkins, Watson and Miller) have more recently found that the same applies in the case of the grouse – the details are shown graphically in Fig. 5. The practical conclusion to be drawn from these studies is that people could as a rule enjoy more intensive shooting without detriment to game stocks – though this conclusion caused scepticism among many shooting men. It is ironical, therefore, that my colleagues and I found exactly the same principle to apply to a pest bird, the wood-pigeon. The number of these shot during organised battues in February was always less than the number which had to be lost to bring about stability in relation to clover stocks. We concluded that winter shooting was not controlling the population, nor in the circumstances did it reduce crop damage. Again this conclusion caused scepticism among many shooting men who could not appreciate that causes of death are compensatory, not additive. Only if more birds are shot than will be lost in any case can shooting become a controlling factor, in the sense that it will reduce numbers to lower levels in the next season.


FIG. 4. Relationship between the autumn population of the grey partridge (top hatched histogram) and red-legged partridge (third histogram from top, hatched) with the percentage of these populations lost between autumn and the following spring represented in the histograms below each. The percentage of birds lost is given by the open columns, and the percentage of these birds which were shot by the solid black. Loss due to other causes, is therefore, the difference between black and open parts of the columns.

[For the grey partridge the total mortality in winter is correlated with the autumn population being heavier in years of higher autumn numbers r11 =0.827. The percentage shot each winter is correlated with the autumn population r11 =0.909. The percentage shot is not correlated with the number lost for other reasons r11 = —0.420.

For the red-legged partridge the total mortality in winter is less correlated with the autumn population of red-legs, r11 =0.583, and more correlated with the autumn population of grey birds r11 =0.747. The number of red-legs shot bears no relation to the autumn population of red-legs but is related to the autumn population of the grey, r11 =0.789.]

The reason for some of the apparently anomalous results with the red-leg in which a higher proportion of birds was sometimes shot than was present in autumn is that the birds were moving into the area. Thus in 1952 the autumn population was 214, 259 birds were shot yet the spring population was 120, i.e. 121% of the autumn population was shot, there was a 77% loss not due to shooting (theoretically the difference between the total loss from autumn to spring=44%; with the loss due to shooting subtracted = — 77%, and this has to be shown by drawing the column below the base line. (Data derived from Table 1, from Middleton & Huband 1966).

The number of red-legged partridges shot on the Norfolk estate has borne only a slight correlation with the autumn numbers (Fig. 4). As the red-leg was much rarer than the grey, any decision on the numbers to be shot was made relative to the latter species, or more accurately to the total numbers of both species, rather than to the autumn population of the red-leg. For this reason the percentage of red-legs shot was fairly strongly correlated with autumn numbers of grey birds, while the total winter mortality (shooting plus natural) was slightly less strongly correlated. This illustrates how the amount of predation (in this case shooting) suffered by a species may be determined by the availability of similar prey. In such circumstances, the situation may arise where undesirably large numbers are lost by accident, even resulting in the extinction of a species.

Still considering Fig. 4, it is possible to imagine that this represented a species where the shooting had been done for pest control and not for sport, and that it was supported by a bounty. It becomes evident that a bonus scheme, unless it actually results in more animals being killed than would die in any case, would in this case prove a complete waste of money as a means of controlling numbers. It could only be justified if the animals concerned were killed before they caused damage. While the undesirability of a direct subsidy is fairly evident, there are often cases where grant-aid is paid in an indirect manner which obscures its futility. Variations in kill dependent on population size, and hence variations in subsidy, would be anticipated in different seasons – yet it usually happens that the amount claimed for a subsidy stays fairly constant. This is so in the case of the amount paid for wood-pigeon shooting. This suggests that only an arbitrary cull is being achieved; arbitrary in the sense that people now do roughly the same amount of shooting each year, and claim a fairly constant and acceptable level of support. It is extremely unlikely that this reflects realistically the variable level of crop damage caused by pigeons.

It is seen that most of the annual fluctuations which occur in the numbers of any bird depend primarily on juvenile rather than adult survival. Most adult birds die not through starvation but by accident – by predation, occasional disease, and pure accidents such as flying into a telegraph wire. In general, big birds are less prone to accident; they are less likely to be caught by a predator and so they tend to have lower death-rates, but there are many exceptions. Established adults must have already experienced a season of food shortage, which they have successfully survived in competition with other individuals. It is unlikely that they will suffer in subsequent years, unless a particularly lean season occurs. In other words, food shortage may only seriously affect an established adult in one year out of many (a hard winter is one example of this). Moreover, in many cases most of the adults which die by accident do so outside the season of normal food shortage; adult starlings, for example (see here), are at greater risk of death during the breeding season, when they are busily occupied with minding their young and are more often caught unawares by predators. If a population remains stable (as in Fig. 1) but produces a large excess of young, it follows that a large number of these must die. This juvenile mortality should be seen primarily as a consequence of the young birds’ competition with the adults, whose greater experience nearly always enables them to survive better than their inexperienced offspring. Indeed, the number of young which will survive depends on how many adults are lost to make room for them, the final adjustment occurring at the worst season of the year for whatever factor is limiting adult population size. This can be food without it appearing obvious. Thus, after breeding, there exists a big excess of young although there may still be enough food to support all individuals. Accidental deaths will occur throughout this time, but it is likely that young will be most severely affected through inexperience. Eventually, and it may be gradually or suddenly, the season of minimum food supplies will arrive. If by this time there are already too many adults, then virtually all the young will now be lost as well as a few adults. If some catastrophe has occurred and no adults are available, then larger numbers of young will survive to restore the former balance between total numbers and environmental resources. But these two extreme situations will occur only rarely. The above account is slightly over-simplified, as in reality adults themselves do suffer a little from competition with their young, and the process is not completely one-sided. Removal of juveniles increases survival prospects for the adults. Furthermore, it will be appreciated that several factors influencing bird numbers may act simultaneously, so that adjustments are continuous – this is why animal populations are called dynamic.

 

FIG. 5. The top of the columns represents the total number of grouse in different autumns on study areas in Scotland on low ground (left) or high ground (right). The number of these birds which were shot is indicated by the solid areas, the number lost through other causes by open columns and the number of grouse alive in the spring by hatching. The data show that more birds must die than are actually shot. On high ground in 1961 there were more grouse in spring and autumn, as a result of immigration. (Data from Jenkins, Watson & Miller 1963).

Our studies of the wood-pigeon provide an example of some of these processes in operation. In 1959 the post-breeding population comprised 171 birds per 100 acres with 1.3 juveniles to every adult. In 1963 there were only 101 birds per 100 acres and 1.5 juveniles to each adult. The clover food supply, at the worst time of the succeeding winters of 1960 and 1964 was near enough the same and so the population was reduced to 34 and 35 birds per 100 acres respectively. But in the 1959–60 season the competition needed to bring about balance (171 down to 34) was clearly much greater than in 1963–4 (101 down to 33). The effect on the juveniles was striking. By the February of 1960 there were only 0.1 young to every adult against 1.1 in 1964. Hence, in both years total numbers reached the same level by winter, but juveniles suffered a 96% loss in 1959–60 against 74% in 1963–4. Adult loss in the first year was 59%, and 58% in the second season. These figures do of course illustrate a density-dependent loss of young. The term mortality has not been used, because some birds were lost through the emigration of both young and old, though it amounts to mortality so far as the carrying capacity of the land was involved in mid-winter. The true annual death-rate of adults was lower than the figures quoted.

This example shows how the age structure of a population may be altered without any change in its ultimate size. The red grouse provides another illustration of this effect, achieved by deliberate killing. It has already been noted that grouse numbers in spring are unaffected by shooting. Yet Jenkins and his team found that over the autumn the death-rates of adults and young were equal (at around 70% per annum), in sharp contrast to all other birds so far studied. This was because so many birds were shot that deaths from natural causes were not fully obvious; presumably shooting is not selective of either age group. If enough animals (old and young combined) are shot natural competition between adults and juveniles can be reduced. In an unshot population of white-tailed ptarmigan in Canada (Choate 1963) the juveniles did suffer a much higher death-rate than the adults. Again, young wood-pigeons are easier to shoot than adults until mid-winter, by which time they seem to have learnt to avoid men with guns and from February onwards are no more easily shot than old birds. But they still do less well than adults when competing for food (and at breeding sites later on) and for this reason suffer a higher death-rate. Clearly, the amount of winter shooting can alter the age structure of the population without affecting final numbers in summer.

As mentioned above, before any artificial killing can result in a reduction of population size, the total number of animals killed must exceed the rate of deaths from natural causes. In addition, as increasing numbers are killed artificially, natural mortality factors cease to operate and must be replaced by artificial ones if compensatory changes are to be avoided. Inability to reach the necessary threshold means failure so far as artificial control is concerned. If numbers need to be kept down it is best, all else being equal, to defer artificial killing to the season when natural factors have taken their toll. If such population control cannot be achieved artificially and numbers cannot be held below a natural optimum, it is vital to show that any cropping does prevent damage; it is of course feasible that artificial killing will remove animals before they would normally die, and so protects crops. But every case has to be taken on its own merits, and examples of wise and foolish applications will be found in later chapters.

The level around which a population fluctuates may be subjected to long-term changes not resulting from the key factors so far considered. Blank et al. have demonstrated that the number of breeding grey partridges (which have shown evidence of a general decline during the present century) is determined by the nature of the habitat. The favoured sites for nesting are an incomplete hedge, that is, a group of separate bushes often patchily arranged on a grassy bank, or a wide grass track. Jenkins (1961) also showed that a lack of winter cover (cereal crops as distinct from tall grass provide little cover) results in the formation of larger territories, because the males can see rivals at greater distances and this causes the breeding population to be lower; under these circumstances surplus birds move on to marginal habitats. It is conceivable that changes in land usage and farming techniques have harmed the partridge by causing the population to fluctuate around a lower level.

The well-documented decline of the corncrake seems to have resulted from farm mechanisation, which has eliminated the old hand cutting of hay and enabled the harvest of silage to take place earlier, to the detriment of nesting corncrakes. Once generally distributed throughout the British Isles, the species disappeared from East Anglia before 1900, from east midland and southern England by about 1914, and from Wales, northern England and east Scotland by about 1939. It remains common only in Ireland, parts of western Scotland and the Hebrides, Orkneys and Shetland – areas where the old methods of hay production to a large extent remain unchanged.

To koniec darmowego fragmentu. Czy chcesz czytać dalej?