Некоторые аспекты оценки эффективности функционирования систем. Вторая редакция, исправленная и дополненная

Tekst
0
Recenzje
Przeczytaj fragment
Oznacz jako przeczytane
Czcionka:Mniejsze АаWiększe Aa

=> не менее популярный термин «человеческие ресурсы» также, по мнению автора, не является приемлемым. Следует отметить, что существует значительное количество субъектов, которые готовы радостно для решения какой-либо задач губить человеческие жизни в количествах неимоверных. Но, с точки зрения анализа объектов и систем, люди являются системообразующим элементом, поэтому, если при решении каких-либо задач происходит выбытие этого элемента, то это является вырождением систем и не иначе.

Но, чтобы не выглядеть совсем уж строгим, автор готов согласиться, что такие свойства объекта, как энергия или финансы могут вполне считаться ресурсами.

1.4.3.2. Многопользовательское потребление ресурсов.

При многопользовательском потреблении услугами ресурсного параметра могут пользоваться несколько ресурсозависимых параметров.

При этом каждый из таких параметров использует ресурс по-своему, т.е. существует своя функциональная зависимость, связывающая скорость (интенсивность) потребления ресурса и скорость движения по соответствующему параметру или величину стабилизируемого параметра.

Автор полагает вполне корректным отслеживать динамику изменения и потребления ресурса независимо по отдельным ресурсозависимым параметрам, определяя для каждого параметра присущие ему прогнозируемую величину запаса ресурса (прогнозируемый расход ресурса), прогнозируемую среднюю скорость использования ресурса, текущую среднюю скорость использования ресурса и т. д.

На основании полученных величин можно определить аддитивно прогнозируемую величину запаса (расхода) общего многопользовательского ресурса.

Общая прогнозируемая величина расхода общего ресурса при знании времени операции позволит определить прогнозируемую среднюю скорость использования общего ресурса либо такой же результат может быть получен аддитивно из частных прогнозируемых средних скоростей используемых частей ресурса.

Также аддитивно могут быть получены и другие общие скоростные показатели и показатели интенсивностей, позволяющие оценивать корректность использования общего ресурса.

1.4.3.3. Множественное потребление ресурсов.

Под множественным потреблением ресурсов понимается случай, когда ресурсозависимый параметр для своей поддержки (движение или стабилизация) требует использования нескольких видов ресурса.

Этот случай не порождает каких-либо проблем, так как вопросы потребления и резервирования ресурсов будут рассматриваться независимо для каждого ресурса.

1.4.3.4. Дополнительные аспекты генезиса ресурсов. Текущее состояние ресурса

Текущее состояние ресурса в общем случае определяется текущим положением объекта в пространстве состояний, а точнее говоря – функциональной зависимостью между величиной смещения объекта в пространстве состояний и величиной изменения ресурса, процессами утечки и восполнения ресурса за период наблюдения, за который происходит смещение, и состоянием ресурса в момент начала наблюдения (или начала смещения объекта).

Если выражением (25.1) обозначить функциональную зависимость изменения данного ресурса (обозначение изменения см. 12/1) от величины смещения (см. 11/1) за период наблюдения (см. 8/1) следующим образом:

выражение 25.1


а символами (см. 13/1) обозначить величины восполнения и утечки ресурса соответственно, происшедшие за временной период, требующийся объекту для совершения смещения (или период наблюдения), а через R0 обозначить состояние ресурса в момент начала наблюдения, то в итоге можно записать выражение (25) для состояния ресурса по окончании смещения:


выражение 25


Производя формальную замену интервала смещения на текущее смещение, а интервала времени на текущее время от начала наблюдения, можно получить выражение (26) для текущего состояния ресурса:


выражение 26

1.5. Системный потенциал. Рельеф пространства состояний

Следует отметить, что в настоящий момент этот раздел имеет статус простого замечания.


В предложенной автором материалов концепции пространства состояний есть определенный недочет, состоящий в том, что все состояния контента в рамках предложенного взгляда представляются равно-статусными.

Но вполне оправданным будет, по мнению автора, придерживаться того, что для любого объекта не все доступные состояния равно-предпочтительны.

Более того, можно допустить, что какие-то состояния показаны объекту, какие-то противопоказаны, какие-то следует признать опасными и т. п.


Для характеристики различной предпочтительности доступных объекту состояний предлагается показатель, в дальнейшем именуемый системный потенциал.


Суть показателя состоит в том, что более качественному состоянию соотносится более высокий системный потенциал, а менее качественному состоянию – более низкий потенциал.


Оценку системного потенциала, в первом приближении, можно произвести через параметры объекта следующим образом:

– среди значений параметров выделяются группы, интервалы, субинтервалы и отдельные значения по следующим признакам:

а) позитивные – показаны в качестве возможного состояния объекта;

б) негативные – не рекомендуются в качестве возможного состояния объекта;

в) нейтральные.

– позитивные и негативные значения всех параметров, определяющих конкретное состояние объекта, складываются алгебраически (нейтральные не участвуют).

– полученный результат, который может оказаться положительным, отрицательным или нулевым числом, собственно и является системным потенциалом состояния объекта.


В результате проведенной операции над объектом, каждому состоянию объекта оказывается сопоставлен показатель – системный потенциал.


Если количество параметров объекта равно N, то данный показатель образует (N+1) -ое измерение.

В этом расширенном пространстве сформируется определенная картина, которую в дальнейшем будем называть рельефом пространства состояний.

Простейшая трактовка рельефа пространства состояний может быть такова:

– из всех возможных неуправляемых направлений движения объектом будет выбрано то, которое ведет к снижению потенциала, а если таких направлений несколько, то будет выбрано то, которому соответствует наибольший градиент снижения;

– если картина представляет из себя поверхность (с количеством измерений N) с нулевым градиентом, то такой рельеф соответствует изотропному пространству состояний, т.е. пространству с равно-статусными состояниями, в противном случае пространство состояний следует считать анизотропным;

– области разрывов и междискретные интервалы по какому-либо параметру можно рассматривать как потенциальные ямы по данному параметру.


На рисунке 12 представлено несколько примеров рельефа пространства (координата Y) состояний для монопараметрической системы (координата X).


Рисунок 12.1 Рельеф пространства состояний дискретной системы


Рисунок 12.2 Рельеф пространства состояний непрерывной системы


Рисунок 12.3 Рельеф изотропного пространства состояний: (а) непрерывного и (б) дискретного


В заключение автор должен констатировать, что он не готов с пеной у рта защищать и отстаивать предложенный способ оценки системного потенциала. Не исключено, что в дальнейшем способ претерпит изменения.

Но само понятие системного потенциала будет достаточно широко использоваться в дальнейшем.

1.6. Особые виды поведения объектов

1.6.1. Сброс, терминальное состояние.

Наблюдая за генезисом систем можно иногда наблюдать как объект, достигнув определенного состояния, мгновенно (сравнительно с системным временем наблюдателя) переходит в другое состояние с одновременным снижением значений ряда параметров, при неизменности других параметров.

В качестве примера можно привести следующие варианты:

– выстрел или взрыв;

– падение с крыши.


Под сбросом будем понимать, с одной стороны, разрыв в рельефе пространства состояний со ступенчатым снижением системного потенциала, а с другой стороны – неуправляемое движение объекта в этом разрыве.


На рисунке 13. изображен сброс (по направлению от точки A к точке B) с точки зрения системного потенциала.


Рисунок 13. Сброс


Сброс может иметь место в системах с пространством состояний любого типа, но в дискретных, дискретно-непрерывных контентах и контентах с разрывами к обычным сбросам добавляются потенциальные ямы, которые в сущности те же сбросы, тем более если движение в междискретных интервалах или разрывах происходит со снижением системного потенциала или объект просто застревает в них.

 

При движении в области сброса объект, по определению, движется неуправляемо, его движение в этот отрезок времени является результатом только того воздействия, которое было на него оказано в последнем перед сбросом состоянии (то есть объект движется по инерции).

Очевидно, что для перехода системы в область сброса достаточно минимального воздействия, достаточного для вывода системы из области разгона.


В соответствии с понятием системного потенциала, движение в области сброса должно сопровождаться скачкообразным уменьшением значений позитивных параметров, вплоть до полного отключения некоторых параметров, и/или аналогичным ростом значений негативных параметров.


Последнее перед сбросом состояние (точка A на рисунке 13) в дальнейшем будем называть пограничным или терминальным, первое состояние после области сброса (точка B на рисунке 13) будем именовать соответственно пост-терминальным.

Параметр или группа параметров, по которому производится фиксация сброса (параметр X на рисунке 13), будут называться параметрами фиксации.


В качестве заключения отметим, что в реальных системах сброс может иметь ту или иную степень пологости (сдвоенная пунктирная линия AC на рисунке 13), в этом случае сброс может быть квалифицирован как таковой только при условии, если изменение параметров фиксации будет много меньше (не менее, чем на порядок), чем изменения параметров, формирующих сброс.


1.6.2. Трансформации и модификация систем. Вырождение систем и самовырождение систем

При наблюдении систем в генезисе можно отметить существование явления, при котором система, покинув некоторое состояние, принципиально не может в него возвратиться либо в процессе движения теряет часть своих свойств.

Возможен и иной процесс, при котором система начинает проявлять новые свойства.

Подобные явления модификации свойств объектов могут проявляться не только в связи с движением объекта в пространстве состояний, но и в случае существования объекта в стабильном состоянии, просто разворачиваясь во времени.


Причины, которые ведут к возникновению таковых ситуаций, могут быть, естественно, различны и, по мнению автора, группируются следующим образом:

– трансформация системы, приводящая равно как к изменению интервалов доступных значений параметров, так и к изменению набора параметров вообще. В эту группу могут быть зачислены явления широкого спектра:

а) развал системы приводит к сокращению числа параметров системы, вплоть до ее полного исчезновения. В свою очередь присоединение новых элементов приводит к появлению (в общем случае) новых параметров. Правда, если рассуждать строго, система с изменившемся набором параметров является уже совершенно другой системой,

б) самопроизвольное либо индуцированное уменьшение или увеличение интервалов доступных значений параметров. Такое происходит в случае естественного износа (инфляции) систем либо в случае автоматического развития (рост детей, например) либо прогрессивных мутаций, либо какого-либо воздействия со стороны окружающей среды.

Процесс самопроизвольного уменьшения числа параметров и/или уменьшение величины интервалов значений параметров принято называть вырождением, инфляцией системы.

Существуют виды систем, наиболее ярким примером является биологическая система, у которых переход в какое-либо состояние приводит к уменьшению интервалов значений параметров таким образом, что предыдущее состояние выбывает из пространства состояний. Системы такого типа называются системами с самовырождением или самовырождающимися системами.

– исчерпание невозобновляемых ресурсов. При движении в пространстве состояний при условии обязательного использования того или иного ресурса, как явствует из рисунка 11, каждый акт движения приводит к появлению корректирующего смещения вниз относительно целевого смещения. Любая попытка подняться к цели приводит к еще большему углублению вдоль оси параметра ресурса. В результате действия этого фактора объекту оказываются недоступны все состояния выше траектории и все пройденные состояния, по которой вынужденно движется объект, что схематично проиллюстрировано на рисунке 14:


Рисунок 14 Движение с использованием ресурсов


 принципиальная однонаправленность генезиса систем, которая состоит в том, что системе в принципе запрещено возвращаться в исходное или предыдущее состояние, равно как и принимать определенные состояния путем выработки или установления наборов правил или запретов, хотя теоретически и технически, исходя из интервалов значений параметров, объект мог бы принять табуированное состояние. Наиболее яркими примерами могут служить либо движение пешки по доске (пешка не может, как известно, возвращаться), либо система запретов в обществе, либо старение людей.

– организация объекта такова, что пространство состояний содержит не все принципиально возможные состояния, исходя из интервалов значений параметров самого объекта. Эту ситуацию легче проиллюстрировать, что и сделано на рисунках 15.1 и 15.2:


Рисунок 15.1 Пространство состояний – треугольник


Рисунок 15.2 Пространство состояний – рукава


Как видно из представленных рисунков, если в пространстве состояний присутствуют вычеты, то в таком контенте объект не сможет принимать все теоретически доступные состояния.

Кроме того, рисунок 15.2. иллюстрирует вариант вырождения пространства – после того как объект пройдет точку B, являющуюся точкой разветвления, и попадет в один из рукавов (при условии их сужения), то каждое движение по рукаву будет оставлять объекту все меньше вариантов дальнейшего продвижения.


Следует отметить, что примеры на рисунках 15 не исчерпывают все возможные варианты пространств состояний с исключениями.


1.6.3. Замечание.

В качестве замечания к вопросам об особом поведении объектов следует отметить, что в реальных системах могут иметь место все рассмотренные в данном разделе факторы, затрудняющие существование систем.

Более того, автор не исключает возможности того, что в данном разделе приведены не все источники и факторы, которые могут приводить к ухудшению генезиса объектов.

1.7. Инерционность объектов. Движение объектов

1.7.1. Инерционность объектов.

Все реальные объекты обладают таким свойством как инерционность.

Инерционность проявляется в том, что старт перехода в другое состояние и равно завершение перехода в требуемое или целевое состояние из предшествующего происходит не мгновенно, а требует конечного времени.


В случае, когда объект совершает то или иное движение, при изменении воздействия инерционность проявляется в задержке начала изменения направления вектора и/или модуля вектора движения, а в случае нахождения объекта в состоянии покоя до появления воздействия инерционность проявляется в задержке начала движения объекта в диктуемом направлении. Оба случая позволяют говорить о статической составляющей инерционности объектов.


Статическая составляющая инерционности объектов аналогична массе покоя в элементарной физике.


Динамическая составляющая инерционности проявляется в конечности ускорения движения при наличии постоянного воздействия на объект (смотри выражение 13).

Это приводит к появлению либо зон разгона и торможения, либо конечных времен разгона и торможения.


Вне зависимости от генезиса объектов инерционность проявляется всегда, но сложность строения объектов оказывает влияние на характер инерционных процессов.


Простейшие пассивные объекты, у которых отсутствует система управления, проявляют естественную инерционность по параметрам, которая определяется тем, что при наличии целевого вектора (внешнего воздействия) требуется некоторое время для того, чтобы такое количество компонентов объекта приобрело целевой вектор (или такое количество элементов объекта в случае однородных систем) и начало движение в направлении цели, которого будет достаточно для того, чтобы началось перемещение объекта в требуемом направлении как единого целого в соответствующем пространстве состояний.

В случае необходимости совершить торможение, под инерционностью будет пониматься время, которое необходимо для того, чтобы достаточное количество элементов или компонентов объектов приобрели вектор торможения, обеспечивающее (имеется в виду количество) начало торможения объекта как единого целого.


В реальных условиях воздействие не производится на все компоненты или элементы объекта одновременно (синхронно, синфазно), первоначально воздействие производится на ряд элементов, наиболее по структуре своих параметров соответствующих структуре параметров воздействия или специально (или по воле случая) являющихся приемниками воздействия.

К тому же величина и направленность воздействия на различные элементы или компоненты объекта могут быть различны.

Передача воздействия на остальные элементы осуществляется посредством внутренних связей (воздействие передается по графу связей). Такая передача занимает некоторое время ввиду задержки сигнала внутри промежуточных элементов и задержки сигнала на стыках элементов.

Эти задержки и обуславливают инерционные свойства объектов.


Следует отметить, что структура объекта (его граф) может быть образована с использованием как жестких структурных связей, так и одновременно с применением слабых связей.


В случае объектов, организованных посредством жестких структурных связей (это объекты, в которых параметры, по которым образуются связи между элементами, имеют одинаковые значения в точках соединения элементов, при этом синхронно и синфазно изменяющиеся в одних и тех же интервалах значений), передача воздействия по графу испытывает задержки только внутри составных элементов объекта.


В случае объектов, организованных посредством слабых связей (параметры элементов, образующих объект, в точках соединения этих элементов имеют значения, которые могут изменяться не синхронно и не синфазно), передача воздействия задерживается не только внутри самих элементов, но и на стыках между ними на время, необходимое для согласования значений контактных параметров. Инерционность таких систем выше, чем систем, образованных из тех же элементов того же количества, но соединенных жесткими связями. Примером таких систем могут служить либо объекты, образованные гибкими соединениями, либо системы, организованные посредством информационных потоков.


В случае объектов, проявляющих признаки параметрической неопределенности или других вариантов дополнительных степеней свободы, когда объект (или его компоненты) в ответ на воздействие стремятся перейти сразу в несколько состояний и/или в состояние, отличное от целевого, такое поведение равносильно появлению дополнительного вектора смещения от целевого вектора, преодоление которого требует дополнительного времени и, объективно, ведет к повышению инерционности объекта.


Следует отметить, что чем более полноценным является внутренний граф объекта (имеется ввиду как можно большее участие как можно большего количества параметров в соединении элементов объекта), тем меньшую инерционность проявляет объект. Предельным случаем являются полносвязные объекты – это объекты, все элементы которых жестко связаны между собой по всем параметрам. Если элементы такого объекта однородны, то величина инерции пропорциональна количеству этих элементов.

Если имеет место случай неполного воздействия, то есть не все параметры страты воздействия взаимодействуют с параметрами-рецепторами объекта, то это равносильно снижению величины воздействия и изменению вектора цели. И хотя в этом случае система прореагирует медленнее, чем в случае полноценного контакта, но это не из-за повышения инерционности объекта, а из-за изменения величины воздействия.


Более сложные объекты, которые снабжены интегрированной некогнитивной системой управления, не теряя естественной инерционности по параметрам, приобретают дополнительную инерционность, обусловленную такими факторами как:

– естественная инерционность параметров системы управления;

– функциональная инерционность системы управления, заключающаяся в том, что системе управления, в задачи которой входит удержание значений регулируемых параметров в определенных пределах, требуется время на отслеживание текущего значения параметра, выработке решения о его соответствии требованиям, в случае несоответствия требуется дополнительное время для выработки управляющего решения и организации и производства управляющего действия.

 

Еще более сложные объекты снабжены когнитивной управляющей системой. В этом случае объект, именуемый уже субъектом, является участником процесса фиксации целей для самого себя. По мнению автора (мнение отражено в Эссе «Общественные системы. Элементы генезиса»), целью субъекта является некий промежуточный результат между требованиями окружающего мира и устремлениями самого субъекта. Поэтому к задержкам, присущим объектам с системой управления, добавляются когнитивные задержки, связанные с:

– обработкой информации не только о текущем состоянии личных параметров субъекта, но и о его положении в системе взаимоотношений;

– производством оценки качества последующего состояния субъекта при реализации исключительно требований окружающего мира;

– производством оценки качества последующего состояния субъекта при реализации исключительно собственных устремлений;

– выработкой результирующего целевого состояния, учитывающего требования окружающего мира и собственных устремлений;

– выработкой алгоритма достижения цели и его конкретизация в управляющие команды;

– доведение управляющих команд до исполнительных органов;

– инерционность исполнительных органов в реализации управляющих команд не добавляет новых нюансов по сравнению с простыми системами с интегрированными системами управления.


В дальнейшем, при рассмотрении движения объектов в пространстве состояний будет пониматься обобщенная величина меры инерции И0, учитывающая в каждом конкретном случае, в соответствии со статьей 5, возможные влияния тех или иных особенностей объектов или способов определения инерционности.


1.7.2. Оценка движения объектов в пространстве состояний.

После того, как (объект) субъект тем или иным способом обретет цель, он начинает двигаться к ней. Следует отметить, что появление цели у объекта может быть, как принципиальным фактором, так и результатом совокупности случайных событий.

Обретение цели субъектом является сложным и, в определенной степени, неоднозначным процессом:

– абсолютно пассивные объекты, лишенные собственной системы управления, приобретают целевую функцию как результат суперпозиции внешних воздействий;

– объекты, снабженные простой системой управления (без когнитивных функций) способны противодействовать внешним воздействиям с тем, чтобы препятствовать недопустимому изменению контролируемых параметров. Слишком сильное внешнее воздействие может преодолеть противодействие системы управления с угрозой разрушения объекта по указанным параметрам;

– объекты, снабженные когнитивными системами, являются участниками (т.е. субъектами) взаимоотношений. Система управления таких объектов решает проблемы не только удержания параметров системы в контролируемых пределах, но и вопросы фиксации параметров субъекта как единого целого в пространстве состояний, образуемом системой взаимоотношений данного субъекта и окружающего мира. Это означает, что назначение цели субъекту является результатом некоторого компромисса между целями, предлагаемыми окружающим миром, и целями, которые самостоятельно назначает себе субъект.


Для характеристики движения обычно используются такие показатели как расстояние до цели, скорость перемещения к цели, прогнозируемое время достижения цели, средняя скорость движения в обобществленном пространстве состояний, точность достижения цели.


Дополнительно, если позволяет нелинейность выражений для скоростных показателей, могут применяться такие показатели как ускорение (первая производная), тенденция (вторая производная или ускорение ускорения).

Также производится оценка инерционных свойств объекта.


1.7.2.1. Расстояние.

При оценке показателей расстояния следует учитывать следующее:

A) общее расстояние до цели. Субъекту в пространстве состояний для достижения цели не всегда пригодно прямое направление от точки старта до точки финиша. Как правило, субъект вырабатывает некоторый алгоритм достижения цели, состоящий из ряда прямолинейных этапов, при этом концы отрезков именуются задачами или узловыми точками. Если таких этапов несколько (D), длина каждого этапа составляет величину Ld, то общее расстояние до цели может быть определено выражением (27) как сумма этапов:


выражение 27


B) следует отметить, что полноценный учет пройденного расстояния субъектом в пространстве состояний важен с точки зрения поведения ресурсозависимых параметров, так как, если в качестве пройденного расстояния принять расстояние между стартом и целью, определяемое длиной прямой, проложенной между ними, то будет неверной оценка конечного состояния ресурсозависимых параметров, да и состояние самих ресурсных параметров будет не совпадать с прогнозируемыми значениями;

C) если учесть, что каждый этап в пределах пространства состояний может быть выражен интервалом значений того или иного параметра (см. 14/1), то общее расстояние от старта до цели может быть выражено через интервалы значений параметров пространства состояний (если допустить, что количество параметров составляет К) выражением (28):


выражение 28


D) расстояние, пройденное субъектом от начала старта до настоящего момента L (t) с учетом алгоритма движения, характеризует текущую позицию субъекта в пространстве состояний. При этом каждый промежуточный этап до текущего состояния субъектом может быть пройден за свое время. Текущее значение пройденного расстояния может быть определено с помощью выражения (29):


выражение 29


где под символом (см. 15/1) понимается отрезок времени, прошедший от начала выполнения текущего этапа под номером (М+1) до момента фиксации текущего значения пройденного расстояния, при том условии, что к моменту старта текущего этапа пройдено М этапов, а под символом (см. 16/1) понимается пройденный отрезок текущего этапа;

E) остаточное расстояние L (t) -, это расстояние, определяемое между текущей позицией субъекта и точкой финиша с учетом алгоритма движения, что может быть определено выражением (30):


выражение 30


F) величина смещения от трассы. Этот показатель рассматривается в статье 3 в виде ошибки состояния. Этот показатель важен с той точки зрения, что перед объектом, в случае ухода с трассы, возникает необходимость либо вернуться на трассу из текущей точки, либо проложить измененную трассу. Все это в совокупности может привести к появлению непрогнозируемых задержек на трассе, либо к изменению условий движения объекта в пространстве состояний. Все эти факторы, в свою очередь, могут негативно сказаться на эффективности объекта.


1.7.2.2. Время.

В качестве временных (ударение на последний слог) показателей в дальнейшем будут использоваться:

– прогнозируемое время операции T0. Для достижения цели (решения задачи) субъекту отводится некоторое время (иногда время решения задачи может совпадать с периодом жизнедеятельности объекта) либо собственной системой управления, либо вышестоящей системой управления (либо в результате их взаимодействия). Исходя из того, что общая дистанция подразделяется на несколько этапов, общее прогнозируемое время также может разбиваться на части, именуемые прогнозируемое время преодоления этапа Tod;

– действительное время достижения цели Тц – это время, которое субъект действительно затрачивает (или затратил) на преодоление дистанции L (оценивается после решения поставленной задачи);

– текущее время Т – время, прошедшее от начала старта по настоящий момент. Одновременно текущее время определяет остаток времени из отпущенного на проведение операции (прохождение этапа);

– прогнозируемое время достижения цели из текущей точки Тп, которое определяется как время, необходимое для преодоления остатка пути до цели, если бы субъект продолжал двигаться с текущей скоростью;

– разница между фактическим и прогнозируемым временем, обозначенная в соответствии со строкой 17 таблицы 1 (см. 17/1) достижения цели из текущей точки характеризует отклонение объекта от графика движения, вызванное различными причинами (инерция, эксцессы во время движения), поэтому время отклонение от графика движения имеет интегральный характер;

– период жизнедеятельности Тж для объектов, имеющих ограниченный срок существования, заканчивающийся разрушением или смертью, т.е. для одноразовых объектов, что верно и для биологических, объектов;

– период активности Та. Этот временной промежуток имеет смысл, если на решение задачи объект (субъект) тратит не все прогнозируемое время операции, а только его часть.


1.7.2.3. Скорость.

В качестве скоростных параметров будут применяться следующие:

– прогнозируемая скорость движения к цели V0. Прогнозируемая скорость определяется как отношение длины дистанции L к прогнозируемому (планируемому) времени достижения цели (31):


выражение 31


– ввиду того, что трасса может быть разбита на несколько участков, движение на каждом из которых (индекс участка обозначен буквой d) может осуществляться по своему графику, то можно ввести показатель прогнозируемой скорости движения по этапу Vod (32):


выражение 32


– средняя скорость достижения цели Vц – определяется отношением длины пути L к затраченному на преодоление этого пути времени Тц в виде выражения (33):


выражение 33


– аналогично прогнозируемой скорости можно определить среднюю скорость движения по этапу (34). Значение этого показателя фиксируется постфактум – по достижении цели (или по достижении конца этапа). Разница между фактической и прогнозируемой скоростью может являться показателем эффективности (на равных правах с временным (ударение на последнем слоге) показателем) решения объектом поставленной задачи:


выражение 34


– текущая скорость V (t) определяется отношением дистанции, пройденной к настоящему моменту времени, к временному (ударение на предпоследний слог) интервалу Т, затраченному на прохождение этого участка и может быть выражено соотношением (35):