Za darmo

Теория реальности

Tekst
Oznacz jako przeczytane
Czcionka:Mniejsze АаWiększe Aa

Экспоненциальное расширение

Есть три простейшие модели Вселенной: плоская, открытая и замкнутая. Плоская Вселенная похожа на поверхность ровного стола; параллельные линии в такой Вселенной всегда остаются параллельными. Открытая Вселенная похожа на поверхность гиперболоида, а замкнутая Вселенная похожа на поверхность шара. Параллельные линии в такой Вселенной пересекаются на ее северном и южном полюсах.

Предположим, что мы живем в замкнутой Вселенной, которая сначала была маленькой как шарик. По теории Большого взрыва, она вырастала до порядочных размеров, но все равно оставалась относительно небольшой. А согласно инфляционной теории, крошечный шарик в результате экспоненциального взрыва за очень короткое время стал огромным. Находясь на нем, наблюдатель увидел бы плоскую поверхность.

Представим себе Гималаи, где существует множество различных уступов, расщелин, пропастей, ложбин, каменных глыб, т. е. неоднородностей. Но вдруг кто-то или что-то совершенно невероятным образом увеличил горы до гигантских размеров, или мы уменьшились, как Алиса в Стране чудес. Тогда, находясь на вершине Эвереста, мы увидим, что она совершенно плоская – ее как бы растянули, и неоднородности перестали иметь какое-либо значение. Горы остались, но для того чтобы подняться хотя бы на один метр, нужно уйти невероятно далеко. Таким образом, может быть решена проблема однородности. Этим же объясняется, почему Вселенная плоская, почему параллельные линии не пересекаются и почему не существуют монополи. Параллельные линии могут пересекаться, и монополи могут существовать, но только так далеко от нас, что мы не можем этого увидеть.

Возникновение галактик

Маленькая Вселенная стала колоссальной, и все стало однородным. Но как же быть с галактиками? Оказалось, что в ходе экспоненциального расширения Вселенной маленькие квантовые флуктуации, существующие всегда, даже в пустом пространстве, из-за квантово-механического принципа неопределенности, растягивались до колоссальных размеров и превращались в галактики. Согласно инфляционной теории, галактики – это результат усиления квантовых флуктуаций, т. е. усиленный и замерзший квантовый шум.

Впервые на эту поразительную возможность указали сотрудники ФИАН Вячеслав Федорович Муханов и Геннадий Васильевич Чибисов в работе, основанной на модели, предложенной в 1979 г. Старобинским. Вскоре после этого, аналогичный механизм был обнаружен в новом инфляционном сценарии и в теории хаотической инфляции.

Небо в крапинку

Квантовые флуктуации приводили не только к рождению галактик, но и к возникновению анизотропии реликтового излучения с температурой примерно 2,7 К, приходящего к нам из дальних областей Вселенной.

Исследовать реликтовое излучение ученым помогают современные искусственные спутники Земли. Самые ценные данные удалось получить с помощью космического зонда WMAP (Wilkinson Microwave Anisotropy Probe), названного так в честь астрофизика Дэвида Уилкинсона (David Wilkinson). Разрешающая способность его аппаратуры в 30 раз больше, чем у его предшественника – космического аппарата COBE.

Ранее считалось, что температура неба всюду равна 2,7 К, однако WMAP смог измерить ее с точностью до 10–5 К с высокой угловой разрешающей способностью. Согласно данным, полученным за первые 3 года наблюдений, небо оказалось неоднородным: где-то горячее, а где-то холоднее. Простейшие модели инфляционной теории предсказали рябь на небе. Но пока телескопы не зафиксировали его пятнистость, наблюдалось только трехградусное излучение, служившее мощнейшим подтверждением теории горячей Вселенной. Теперь же выяснилось, что теории горячей Вселенной не хватает.

Вечная и бесконечная

Посмотрим еще раз на рисунок, показывающий простейший потенциал скалярного поля (см. выше). В области, где скалярное поле мало, оно осциллирует, и Вселенная не расширяется экспоненциально. В области, где поле достаточно велико, оно медленно спадает, и на нем возникают маленькие флуктуации. В это время происходит экспоненциальное расширение и идет процесс инфляции. Если бы скалярное поле было еще больше (на графике отмечено голубым цветом), то за счет огромного трения оно бы почти не уменьшалось, квантовые флуктуации были бы огромны, и Вселенная могла стать фрактальной.

Представим, что Вселенная быстро расширяется, а в каком-то месте скалярное поле, вместо того чтобы катиться к минимуму энергии, из-за квантовых флуктуаций подскакивает вверх (см. выше). В том месте, где поле подскочило, Вселенная расширяется экспоненциально быстрее. Низкорасположенное поле вряд ли подскочит, но чем выше оно будет находиться, тем больше вероятность такого развития событий, а значит, и экспоненциально большего объема новой области. В каждой из таких ровных областей поле тоже может подскочить наверх, что приводит к созданию новых экспоненциально растущих частей Вселенной. В результате этого, вместо того чтобы быть похожей на один огромный растущий шар, наш мир становится похожим на вечно растущее дерево, состоящее из многих таких шаров.

Инфляционная теория дает нам единственное известное сейчас объяснение однородности наблюдаемой части Вселенной. Парадоксальным образом эта же теория предсказывает, что в предельно больших масштабах наша Вселенная абсолютно неоднородна и выглядит как огромный фрактал.

Свойства пространства-времени и законы взаимодействия элементарных частиц друг с другом в разных областях Вселенной могут быть различны, равно как и размерности пространства, и типы вакуума.

Этот факт заслуживает более детального объяснения. Согласно простейшей теории с одним минимумом потенциальной энергии, скалярное поле катится вниз к этому минимуму. Однако более реалистические версии допускают множество минимумов с разной физикой, что напоминает воду, которая может находиться в разных состояниях: жидком, газообразном и твердом. Разные части Вселенной также могут пребывать в разных фазовых состояниях; это возможно в инфляционной теории даже без учета квантовых флуктуаций.

Следующим шагом, основанным на изучении квантовых флуктуаций, является теория самовосстанавливающейся Вселенной. В этой теории учитывается процесс постоянного воссоздания раздувающихся областей и квантовые скачки из одного вакуумного состояния в другое, перебирающие разные возможности и размерности.

Так Вселенная становится вечной, бесконечной и многообразной. Вся Вселенная никогда не сколлапсирует. Однако это не означает, что отсутствуют сингулярности. Напротив, значительная часть физического объема Вселенной все время находится в состоянии, близком к сингулярному. Но так как различные объемы проходят его в разное время, единого конца пространства-времени, после которого все области исчезают, не существует. И тогда вопрос о множественности миров во времени и в пространстве приобретает совершенно другое звучание: Вселенная может самовоспроизводиться бесконечно во всех своих возможных состояниях.

Это утверждение, в основе которого лежали работы Линде сделанные им в 1986 году, прибрело новое звучание несколько лет назад, когда специалисты по теории струн (лидирующий кандидат на роль теории всех фундаментальных взаимодействий) пришли к выводу что в этой теории возможно 10100–101000 различных вакуумных состояний. Эти состояния отличаются за счет необычайного разнообразия возможного устройства мира на сверхмалых расстояниях.

В совокупности с теорией самовосстанавливающейся инфляционной Вселенной, это означает, что Вселенная во время инфляции разбивается на бесконечно много частей с невероятно большим количеством разных свойств. Космологи называют этот сценарий теорией вечной инфляционной мультивселенной (multiverse), а специалисты по теории струн называют это струнным ландшафтом.

25 лет назад инфляционная космология выглядела как нечто промежуточное между физической теорией и научной фантастикой. За прошедшее время многие предсказания этой теории были проверены, и она постепенно приобрела черты стандартной космологической парадигмы. Но успокаиваться еще рано. Эта теория и сейчас продолжает быстро развиваться и меняться. Основная проблема – разработка моделей инфляционной космологии основанных на реалистических вариантах теории элементарных частиц и теории струн. Этот вопрос может быть темой отдельного доклада.

КВАНТОВАЯ ФИЗИКА

ГЛАВА 7

Квантовая физика является молодой наукой, что не мешает появлению в ней фантастических гипотез. Перспективы квантовой физики способны поразить любое сознание. Вот лишь несколько примеров: появление квантовой криптографии, основанной на передаче информации отдельными фотонами, и развитие квантового компьютера, который использует квантовую суперпозицию и квантовую запутанность для работы с информацией.

Квантовая гипотеза Планка
e = nh,

где e – энергия излучения, n – частота излучения, h – постоянная Планка.

Это предположение показывало, что законы классической физики неприменимы к микромиру.

В 1925 году Вернер Гейзенберг сформулировал теорию квантовой механики.

Квантовая механика – раздел квантовой физики, описывающий свойства и строение субатомных частиц и их систем.

Метод Гейзенберга требовал работы с матрицами (математическая таблица, представляющая набор упорядоченных чисел). Отсюда название – матричная механика. Теория объясняла, как происходят квантовые скачки.

Квантовый скачок – переход квантовой системы (в частности атома) с одного энергетического уровня на другой.

Подход Гейзенберга включал два компонента:

Полный набор частот, на которых излучает атом вследствие квантового скачка;

Вероятности, в соответствии с которыми происходят скачки;

Замысел матричной механики заключался в том, что физические величины, характеризующие частицу, описываются матрицами, изменяющимися во времени.

 

Если вы любите загадочные словосочетания, то на первом месте среди них наверняка стоит «квантовая физика». Для многих это что-то сродни магии, которая появляется из ниоткуда и уходит в никуда. Вот только на деле все сложнее, но мы постараемся объяснить это простым языком.

Квантовая физика – часть физики, изучающая поведение субатомных частиц на мельчайших расстояниях, где проявляются загадочные квантовые эффекты и перестает работать общая теория относительности. Квантовая физика, несмотря на свою сложность и порой нелогичность, все же считается самым точным и проверенным звеном науки.

Множество предсказанных квантовой механикой явлений были обнаружены экспериментально и взяты на вооружение: квантовое туннелирование, квантовая запутанность, принцип неопределенности и многое другое «Квантовая физика настолько сложная, что ее никто не понимает», – писал нобелевский лауреат Ричард Фейнман. И это не удивительно, так как даже Альберт Эйнштейн относился к ней настороженно, называя феномен квантовой запутанности «сверхъестественным» и «жутким». В вероятностной природе квантовой механики сомневался ирландский физик-теоретик Джон Белл и другие основоположники этой теории. Но несмотря на споры и разногласия, таинственный мир элементарных частиц стал драйвером современной цивилизации: интернет, компьютеры, смартфоны, лазеры, оптоволоконные сети и атомная энергетика существуют благодаря науке о квантах. Только представьте к чему могут привести дальнейшие открытия, которых с каждым годом становится все больше. Так, в 2022 году лауреатами Нобелевской премии по физике стали стразу трое ученых, которые независимо друг от друга проводили эксперименты с запутанными фотонами, сенсорными технологиями и безопасной передаче информации. К слову, не обошлось без квантовой телепортации, но обо всем по-порядку.

В 2022 году лауреатами Нобелевской премии по физике стали Ален Аспе, Джон Клаузер и Антон Цайлингер. Трое физиков удостоились награды за эксперименты по квантовой запутанности, в основе которых лежат труды таких выдающихся ученых как Нильс Бор, Альберт Эйнштейн и Джон Белл – все они хотели понять природу странного поведения элементарных частиц, способных находиться далеко друг от друга сохраняя между собой связь.

Как отмечают представители Шведской королевской академии наук, в будущем работы Аспе, Клаузера и Цайлингера сыграют важную роль в области квантовых вычислений и безопасной передачи данных, открывая новую главу в истории квантовой механики. Интересно, что исследователи работали независимо друг от друга пытаясь объяснить «жуткий» феномен запутанных элементарных частиц.

ТЕОРИЯ ЗАМЕДЛЕНИЯ ВРЕМЕНИ

ГЛАВА 8

Прочитал любопытную и забавную «теорию» замедления времени в повседневной жизни. Её автор провел аналогию с известным «парадоксом близнецов» Специальной теории относительности (СТО).

Это не только забавно, но и поучительно. Читайте и делайте выводы сами…

Время, похоже, летит, когда мы говорим с привлекательными для нас людьми или когда мы делаем то, что нам нравится. И оно замедляется, когда мы делаем что-то, что нам кажется скучным.

Возможно, это нечто большее, чем кажется на первый взгляд.

Оказывается, наш повседневный опыт времени согласуется с исследованиями Эйнштейна и его Теорией Относительности.

В частности, он согласуется с явлением, называемым Замедление времени (Time Dilation).