Ingeniería de la energía eólica

Tekst
0
Recenzje
Przeczytaj fragment
Oznacz jako przeczytane
Czcionka:Mniejsze АаWiększe Aa

Figura 1.5. Vista parcial de un parque eólico moderno.

b) Principio de funcionamiento de la turbina eólica

De forma similar a los molinos de viento, las antiguas turbinas funcionaban según el principio de la resistencia o fuerza de arrastre que ofrecían las palas a la acción del viento. Este diseño no aerodinámico, conducía a rendimientos de conversión de energía cinética del viento en energía mecánica en el eje de la máquina muy pequeños, alcanzándose tan solo valores del orden de un 12%.

Las turbinas modernas funcionan bajo el principio de la fuerza de sustentación que se desarrolla en la pala, debida a su diseño aerodinámico, de forma similar al de una ala de avión. El rendimiento máximo de conversión viene dado por el límite de Betz (59,3 %), es decir solo se puede extraer al viento como máximo el 59,3% de su energía. Actualmente, debido al avance en el diseño aerodinámico y estructural de las palas, se alcanzan valores muy elevados, del orden del 50%, próximos al límite de Betz.

También ha mejorado el rendimiento global de conversión de energía mecánica captada por el rotor de la turbina a energía eléctrica y que incluye básicamente las pérdidas mecánicas de rozamiento por transmisiones, y las pérdidas del generador eléctrico. El valor máximo de este rendimiento se sitúa en el entorno del 95%, por lo que aproximadamente un gran aerogenerador en condiciones óptimas de rendimiento máximo puede llegar a convertir en energía eléctrica aproximadamente el 45% de la energía cinética del viento que incide sobre el rotor de la turbina eólica.

c) Control de la rotación de la turbina eólica

La velocidad de giro de la turbina eólica se controla para evitar que un viento muy intenso pueda sobrecargar el generador produciéndole daños, para optimizar el rendimiento de la máquina y para controlar la tensión y frecuencia generada.

En la década de 1980, el sistema dominante fue el denominado “modelo danés”, basado en el control por pérdida aerodinámica (stall) con pala de paso fijo. El típico generador de esa época tenía una potencia nominal no mayor de unos 300 kW, rotor tripala con palas de paso fijo girando a velocidad constante y provisto de un generador asíncrono de jaula de ardilla. La velocidad de giro de la turbina eólica se regulaba por la frecuencia de la red, a través del propio generador eléctrico de inducción.

Posteriormente, se introdujo el sistema de pérdida aerodinámica activa (active stall) para lograr una mejora en el rendimiento, consistente en permitir a las palas un pequeño ángulo de giro alrededor de su eje longitudinal, iniciando la técnica de paso variable (pitch). Este giro podía ser de toda la pala o bien solo de sus extremos que de esta forma actuaban como frenos aerodinámicos. Progresivamente el control de pala de paso variable (pitch) se ha ido implantando frente al de pérdida aerodinámica de paso fijo (stall).

La evolución del cambio de turbinas eólicas de velocidad de giro constante a variable se inició con el aerogenerador capaz de operar con dos velocidades a fin de aprovechar mejor las velocidades variables del viento y mantener constante la frecuencia de la tensión generada (50 Hz en Europa, 60 Hz en América).

En la década del 2000, se ha producido un significativo aumento de las turbinas a velocidad de giro variable, que tienen mejor comportamiento que las de velocidad constante frente a las variaciones de la velocidad del viento, suavizando el par y las cargas, disminuyendo el ruido aerodinámico debido a turbulencias y mejorando el rendimiento energético. Los dos sistemas de generación eléctrica más utilizados en este tipo de turbinas eólicas a velocidad variable son: el generador asíncrono con rotor doblemente alimentado y el generador síncrono multipolo con acoplamiento directo al rotor de la turbina (sin caja multiplicadora) y con conversión de la tensión alterna de frecuencia variable generada a la salida del alternador a tensión alterna a frecuencia constante, a través de sistemas de electrónica de potencia. Este último modelo de aerogenerador permite la supresión de la caja multiplicadora de velocidad (gear box) entre el eje de la turbina eólica y el del alternador eléctrico.

d) Materiales

Las palas del rotor son las partes más sensibles a la fatiga causada por las cargas dinámicas. Inicialmente se construyeron de madera, aluminio (poco resistente a la fatiga) y de acero (muy pesado), para pasar posteriormente al uso de plásticos.

En los plásticos, inicialmente se usó el poliéster para ser desplazado en las turbinas modernas por resinas epóxicas sobre fibra de vidrio. Su fabricación encarece el coste del generador. Las palas del rotor pueden llegar a alcanzar el 20% del coste total del aerogenerador. Actualmente, se considera también la fibra de carbono como un posible material a utilizar, aunque el precio es su principal factor limitante.

e) Parámetros de funcionamiento

La mayoría de turbinas arrancan a partir de velocidades del viento alrededor de 3 a 4 m/s y alcanzan su potencia nominal entre 12 y 15 m/s. La potencia eólica es proporcional al cuadrado del diámetro del rotor eólico y al cubo de la velocidad del viento, de ahí el interés de rotores de mayor diámetro y de elevar los aerogeneradores ya que la velocidad del viento crece con la altura respecto al suelo.

La potencia específica (potencia nominal por unidad de área barrida por el rotor eólico) se sitúa alrededor de 0,4 a 0,5 kW/m2. La producción específica anual de energía eléctrica (energía anual por unidad de área barrida por el rotor) está comprendida en el intervalo de 800 a 1.500 kWh/m2.

El factor de carga, definido como la relación entre la energía eléctrica producida durante un año y la que produciría el aerogenerador si hubiese estado trabajando a potencia nominal durante ese mismo período de tiempo, se sitúa en la mayoría de los casos en el intervalo del 20 al 30% (entre 1.750 y 2.650 horas anuales equivalentes a plena carga), pudiéndose alcanzar excepcionalmente valores del orden del 40 al 50%.

La disponibilidad, definida como el porcentaje de tiempo que el generador está disponible durante un año para producir energía, excluyendo las paradas programadas por revisión y mantenimiento preventivo, alcanza valores próximos al 98%, lo que da una idea de la elevada fiabilidad y mantenibilidad alcanzada en esta tecnología.

La vida útil de los aerogeneradores se estima en unos 20 años, lo que equivale a unas 100.000 horas de funcionamiento, exceptuando el mantenimiento preventivo, las tareas de revisión y las paradas programadas.

f) Parques eólicos

A finales de la década del 2000, el aerogenerador “tipo” que integra un parque eólico, presenta las siguientes características: capacidad nominal de 1,5 a 3 MW, diámetro del rotor de 70 a 90 m, velocidad de rotación en el entorno de 10 a 15 rpm, altura de la torre de 60 a 100 m, velocidad del viento de arranque de 3 a 4 m/s, velocidad del viento nominal de 12 a 15 m/s y velocidad del viento de parada de 25 a 30 m/s.

Este aerogenerador “tipo” está caracterizado por un rotor eólico a velocidad variable, con regulación aerodinámica por variación del ángulo de paso pitch, y provisto de un generador eléctrico asíncrono con rotor bobinado doblemente alimentado o un generador síncrono multipolo. Presenta una elevada disponibilidad, superior al 98% y una eficiencia aerodinámica que puede alcanzar el 85% del límite de Betz (59,3%), lo que se traduce en un rendimiento máximo de conversión de energía cinética del viento en energía mecánica en las palas del rotor del orden del 45%. El aerogenerador presenta un buen comportamiento frente a los huecos de tensión, una adecuada gestión de la potencia activa y reactiva así como del control de tensión y frecuencia.

El tamaño medio del parque eólico “tipo” es de unos 50 MW, con un número de aerogeneradores en el entorno de 30 a 40. Para favorecer los factores de economía de escala se tiende a parques de gran capacidad nominal instalada.

g) Parámetros económicos

A finales de la década del 2000, para parques eólicos terrestres (onshore), el coste unitario de la potencia instalada se sitúa entre 1.000 y 1.600€/kW del cual el aerogenerador representa de 900 a 1.300€/kW. La estructura de costes, aproximadamente es: 70% aerogenerador, 11% obra civil, 12% equipamiento e interconexión eléctrica y 7% varios. Los costes de operación y mantenimiento (O&M) se estiman de un 2 a un 3,5% anual de la inversión, lo que los sitúa en un intervalo entre 10 y 20€/MWh eléctrico producido.

El coste unitario de inversión en parques marinos (offshore) es mayor debido esencialmente a los costes de infraestructura, transporte e interconexión eléctrica. Se sitúa en el intervalo de 2.000 a 3.000€/kW.

h) Mejoras introducidas

Entre las mejoras alcanzadas en los últimos años en la tecnología eólica cabe señalar:

 Aumento del tamaño de las máquinas. Actualmente se dispone de aerogeneradores de alrededor de 3 MW, y se espera en un futuro próximo la implantación de potencias unitarias de hasta 5 MW.

 Desarrollo de aerogeneradores de velocidad variable que accionan alternadores síncronos multipolo. Este tipo de alternador genera tensión a frecuencia variable que posteriormente es transformada a frecuencia constante (50 o 60 Hz) mediante conversores de frecuencia de electrónica de estado sólido.

 

 Modelos de aerogeneradores de paso variable y velocidad variable diseñados para distintas clases de viento (clases I, II y III).

 Mejoras en los sistemas de transmisión del par mecánico entre el rotor de la turbina y el generador eléctrico. Se han desarrollado sistemas de transmisión en los que el eje solo transmite el par motor, derivando las cargas debidas a los momentos flectores a la estructura de la góndola.

 Mejoras en el diseño estructural y optimización del uso de materiales para disminuir el peso de la máquina con aumento de resistencia frente a cargas estáticas y dinámicas.

 Se ha iniciado el desarrollo e implantación de aerogeneradores marinos (offshore).

 Se han mejorado los sistemas de protección frente a descargas eléctricas atmosféricas (rayos) y la operación en condiciones atmosféricas adversas: paradas por congelación, producción con vientos muy cálidos (t > 40ºC) y generación en ambientes salinos.

 Mejoras en el diseño de las torres para facilitar su transporte y montaje.

 Adaptación a los requisitos de conexión con la red eléctrica (estabilidad transitoria, controles de tensión, de frecuencia, de potencias activa y reactiva, comportamiento frente a huecos y calidad de onda producida).

 Avances significativos en la predicción de la producción eólica a corto plazo para cumplir exigencias de entrega de potencia y energía a la red eléctrica.

 Mejora de operaciones de mantenimiento. Mayor presencia del mantenimiento remoto.

 Elaboración de normas técnicas y procesos de certificación por terceros

Entre las tecnologías eólicas de los generadores eléctricos en máquinas eólicas, desarrolladas los últimos años cabe citar como más significativas:

a) La de accionamiento directo entre el rotor eólico y el generador síncrono (máquina sin caja multiplicadora) conocida como tecnología Direct Drive. La excitación se realiza mediante imanes permanentes. Se la conoce comercialmente también como tecnología Enercon. Como ventajas más relevantes presenta la supresión de la multiplicadora (gear box), la reducción de esfuerzos mecánicos, menor mantenimiento y aumento de la disponibilidad. En contrapartida la baja velocidad de giro del alternador hace que el par sea más elevado y los componentes del mismo más voluminosos y pesados, aumentando su coste.

b) Generador síncrono con excitación externa y con Full Power Converter. La excitación se realiza a través de los devanados del rotor. Presenta una respuesta correcta a los requisitos de la red y frente a huecos de tensión, así como una buena capacidad de generación de reactiva. Puede trabajar en condiciones inestables de red sin desconectar. Como contrapartida presenta un generador más pesado con un mayor cose de inversión, pérdidas en el Full Power Converter y un aumento en el equipamiento electrónico del sistema.

c) Generador asíncrono o de inducción con rotor doblemente alimentado. Presenta un mejor comportamiento frente a la demanda de reactiva que el rotor simple de jaula de ardilla, una mejor regulación y una mejor respuesta frente a huecos de tensión y otras incidencias de la red. En contrapartida requiere una mayor complejidad en su sistema de regulación y control, y es de mayor coste.

CAPÍTULO 2
Física de la atmósfera: el viento

2.1. La atmósfera

La atmósfera es la capa gaseosa que envuelve la Tierra. Su espesor es pequeño. El 99% de la masa atmosférica se concentra en los primeros 30 km de altura (un 0,5% del radio terrestre). El aire es una mezcla de gases que además contiene partículas sólidas y líquidas (aerosoles) en suspensión en cantidad y composición variable.

Los gases que forman la atmósfera se clasifican en:

 Gases permanentes: su proporción se mantiene prácticamente constante. Son el nitrógeno, oxígeno, gases nobles e hidrógeno.

 Gases en proporciones variables: dióxido de carbono, vapor de agua y ozono.

Las partículas sólidas y líquidas más importantes son cristales de hielo y microgotas de agua (nubes, nieblas y brumas). Otras partículas son polvo, polen, etc. La composición del aire hasta una altura de unos 100 km se muestra en la tabla 2.1


Tabla 2.1. Composición del aire en la atmósfera hasta una altura de unos 100 km.

Se puede admitir que el aire seco se comporta como una mezcla de gases ideales. Sus propiedades vienen dadas en la tabla 2.2.


Tabla 2.2. Propiedades termodinámicas del aire seco

La densidad del aire seco se calcula por la ecuación de gases ideales:


En donde, ρ: densidad (kg/m3); p: presión absoluta (Pa); T: temperatura (K); R’: constante del gas (tabla 2.2).

Ejemplo 2.1

Calcular la densidad del aire seco para una presión atmosférica de 990 mbar y temperatura 25ºC y compararla con la correspondiente a las condiciones estándar (presión atmosférica normal a nivel del mar 1.013,25 mbar y temperatura 15ºC).

Solución

Para 990 mbar y 25ºC resulta:


Para 1013,25 mbar y 15 ºC se obtiene:


Obsérvese el efecto de la presión y de la temperatura sobre la densidad del aire. La potencia del viento captada por un aerogenerador es directamente proporcional a la densidad del aire, por lo que cuanto más frío esté y mayor sea la presión atmosférica, para una misma velocidad de viento, la energía eólica extraída será mayor.

2.2. Gradiente térmico vertical. Capas atmosféricas

La temperatura del aire varía con la altura. Se define el gradiente térmico (dT/dz), como la variación de la temperatura (T) del aire con la altura (z). La atmósfera se divide verticalmente en capas según el gradiente de temperatura. Se distinguen tres grandes zonas, según se muestra en la figura 2.1:

a) Homosfera o baja atmósfera: hasta una altura de 80 a 100 km. La composición del aire es prácticamente constante. A su vez se subdivide en tres capas:

 Troposfera: es la zona inferior de la atmósfera, donde se desarrollan los fenómenos meteorológicos. Contiene aproximadamente el 80% de la masa atmosférica. La temperatura disminuye con la altura según un gradiente medio de 6,5ºC/km. Sin embargo, el perfil de temperatura es muy variable en función del tiempo y del lugar. La parte superior de esta región se denomina tropopausa y separa la troposfera de la estratosfera. Su altura es variable (de 6 a 8 km en los polos y de 16 a 18 km en el ecuador).

 Estratosfera: la temperatura aumenta con la altura (inversión térmica) lo que ocasiona una gran estabilidad pues los movimientos verticales se ven frenados por esta inversión de temperatura. Los principales intercambios energéticos son de tipo radiativo y en esta capa se produce la absorción de la radiación ultravioleta por el ozono (a una altura de 8 a 30 km). El límite superior de la estratosfera se denomina estratopausa y está a unos 50 km de altura.

 Mesosfera: en esta capa vuelve a disminuir la temperatura con la altura hasta unos 80 a 90 km, donde la temperatura alcanza sus valores menores (alrededor de - 90ºC) en la región conocida como mesopausa.

b) Heterosfera: se inicia a una altura de 90 a 100 km. Atmósfera muy enrarecida de baja densidad y composición variable debido a las reacciones químicas y a la difusión de los gases por efecto de la gravedad. La heterosfera comprende:

 Termosfera: la temperatura vuelve a aumentar con la altura, hasta valores entre 500 y 2.000 K en su parte superior, según el nivel de actividad solar. El aire está muy enrarecido. El límite superior de la termosfera es la termopausa cuya altura varía entre 200 y 500 km, según la actividad solar.

 Metasfera: para alturas superiores a los 500 km la termosfera recibe el nombre de magnetosfera ya que el movimiento de las partículas viene condicionado por el campo magnético terrestre.

c) Exosfera: Constituye la zona más alejada de la atmósfera. El gas está muy enrarecido, con muy baja densidad. Las partículas están ionizadas. El conjunto formado por la heterosfera y la exosfera se conoce también como alta atmósfera.


Figura 2.1. Estructura vertical de la atmósfera terrestre.

El perfil vertical de temperaturas en función de la altura se muestra en la figura 2.2.


Figura 2.2. Perfil vertical de temperatura de la atmósfera estándar.

Algunas zonas de la atmósfera de especial interés son:

 Ionosfera: es una región comprendida entre 60 y 600 km de altura en la que los componentes del aire están muy ionizados debido a la acción de los rayos UV de onda corta, los rayos X y la radiación cósmica. Esta región juega un papel muy importante en la transmisión de las ondas de radio.

 Ozonosfera: situada en la estratosfera, entre unos 15 y 40 km de altura, esta región presenta una elevada concentración de ozono, cuya propiedad absorbente de la radiación UV evita la llegada de la mayoría de la misma a la superficie terrestre, actuando como un escudo protector frente a dicha radiación.

La tabla 2.3 muestra la clasificación de las distintas capas atmosféricas según el gradiente térmico vertical.


Capa Altura (km) Características del gradiente
Troposfera 0 – 10 dT/dz < 0 (estratificación adiabática)
Tropopausa 10 – 20 dT/dz = 0 (estratificación isoterma)
Estratosfera 20 – 40 dT/dz > 0
Estratopausa 40 – 50 dT/dz = 0
Mesosfera 50 – 80 dT/dz < 0
Mesopausa 80 – 90 dT/dz = 0
Termosfera 90 – 100 dT/dz > 0

Tabla 2.3. Estructura atmosférica según el gradiente térmico.

2.3. La atmósfera estándar

Como referencia, se define una atmósfera estándar según se indica en la tabla 2.4.


Aire seco % (volumen) N2 (78,04); O2 (20,99); Ar (0,94); CO2 (0,035)
Condiciones estándar (nivel del mar, altura z = 0 m) p = 1.013,25 mbar ; t = 15 0C ; ρ = 1,2257 kg/m3; R’ = 287,04 J/kg K
Aceleración de la gravedad: g = 9,80665 m/s2
Coeficiente de dilatación del aire = 1/273 (ºC)-1
Troposfera 0 < z < 11.000 m Temperatura t (ºC): t = 15 – 0,0065 z
Presión p (mb): p = 1013,25×(1 – 2,2569 × 10-5 Z)5,2561
Tabla 2.4. Características de la atmósfera estándar.

Ejemplo 2.2

 

Calcular la temperatura y la presión del aire a una altura de 1.000 m

Solución

Utilizando las expresiones de la tabla 2.4, para una altura z = 1.000 m se tiene:


2.4. Estabilidad de la atmósfera

Un proceso en el que no hay intercambio de calor con el medio que lo rodea se conoce como proceso adiabático. En la atmósfera, la relación entre el perfil de temperaturas correspondiente a una elevación adiabática del aire y el perfil real de temperaturas define la estabilidad vertical de la atmósfera.

En energía eólica, la troposfera es la capa de mayor interés. En la misma, el perfil de temperaturas para la estratificación adiabática presenta un gradiente térmico teórico para el aire seco igual a -9,8ºC/km. En la práctica, la atmósfera real y la presencia de vapor de agua reducen este gradiente a -6,8ºC/km.

El calentamiento y enfriamiento del suelo por la radiación solar, junto con la mezcla de masas de aire de diversa procedencia, ocasiona la variación de la temperatura del aire con la altura. Esta variación condiciona los movimientos verticales del aire. La atmósfera se considera estable cuando se inhiben los movimientos verticales, en caso contrario la inestabilidad los facilita. Una atmósfera neutra es indiferente a estos movimientos. Cuando una masa de aire asciende se pueden distinguir tres casos:

 Atmósfera neutra: el perfil vertical de temperatura es tal que a medida que se asciende, una atmósfera neutra presenta la misma temperatura que tendría si la elevación se realizase de forma adiabática. El perfil adiabático de temperaturas coincide con el perfil real de temperaturas de la atmósfera neutra.

 Atmósfera estable: el perfil vertical de temperatura es tal que a medida que se asciende, la atmósfera estable tiene una temperatura mayor que la que tendría si la elevación fuese adiabática. El perfil real de temperaturas presenta una pendiente mayor que el adiabático del aire seco (figura 2.3), de tal forma que si una partícula de aire situada en el punto A ascendiera, su temperatura adiabática sería menor que la temperatura real del aire de su entorno por lo que la partícula tendería a descender, inhibiéndose los movimientos verticales.

 Atmósfera inestable: el perfil de temperaturas es tal que a medida que se asciende, la atmósfera inestable presenta una temperatura menor que la que tendría si la elevación fuese adiabática. Si una partícula de aire situada en el punto A ascendiera adiabáticamente su temperatura adiabática sería mayor que la temperatura real del aire por lo que tendería a seguir elevándose, creando movimientos verticales que favorecerían la mezcla en la atmósfera. El perfil real de temperaturas presenta una pendiente menor que el perfil adiabático del aire seco (figura 2.3).


Figura 2.3. Perfiles de temperaturas de la atmósfera real y adiabático de aire. Caso (a) atmósfera estable; caso (b) atmósfera inestable.

En general durante el día, debido a la acción del sol, las masas de aire se calientan y la atmósfera tiende a inestabilizarse con el consiguiente aumento de la intensidad del viento en superficie. En cambio, por la noche tiende a estabilizarse.

2.5. Circulación atmosférica general

El movimiento del aire se realiza fundamentalmente en la troposfera y sobre el mismo influyen los siguientes factores:

 La radiación solar, mayor en la zona ecuatorial que en los polos.

 La rotación de la Tierra, que produce el efecto Coriolis, desviando la dirección de los vientos hacia la derecha en el hemisferio norte y hacia la izquierda en el sur.

 La acción sobre las masas de aire de las diferencias de presión atmosférica, distintos tipos de superficies terrestres (continentes y mares) y la orografía.

En la zona ecuatorial debido al calentamiento solar, se origina un movimiento ascendente convectivo de las masas de aire, en una franja denominada zona de convergencia intertropical. El aire se eleva y se traslada hacia latitudes más altas, siendo sustituido por la llegada a la superficie ecuatorial de aire más fresco de los trópicos (vientos alisios). Este fenómeno da lugar a las denominadas células de Hadley. Un proceso similar se produce en las latitudes polares más septentrionales dando lugar a las células polares y a las de Ferrel (figura 2.4).

En latitudes medias, los vientos son básicamente del oeste pero con tendencia hacia las zonas polares. Para una latitud próxima a 50º se produce una separación entre el aire tropical cálido y el polar frío, formándose un frente polar, con muchas ondulaciones, dando lugar a depresiones frontales. En zonas polares el aire frío tiende a desplazarse a latitudes más bajas.

En la figura 2.4, se muestra el esquema de la circulación general atmosférica.


Figura 2.4. Esquema de la circulación general de la atmósfera.

En cada hemisferio se distinguen tres grandes núcleos: tropical, templado y polar.

En latitudes ecuatoriales, la depresión originada por el calentamiento de las capas inferiores de la troposfera ejerce un efecto de succión de aire en ambos hemisferios (zona de convergencia intertropical), provocando a ambos lados de la zona vientos alisios de componente este, de carácter muy regular y dirigidos hacia el ecuador. Se extienden hasta los 30º de latitud norte y sur.

Los núcleos templados están separados de los tropicales por zonas de altas presiones situadas hacia los 30º de latitud. Estas zonas son de calma y con escasas precipitaciones. En ellas se encuentran los mayores desiertos (Sáhara, Arabia, Gobi en el hemisferio norte y Kalahari y Australia en el sur).

De estas zonas de altas presiones divergen tanto los alisios como los vientos del oeste y se caracterizan por vientos muy débiles y por áreas muy tranquilas. Los anticiclones se desplazan algo hacia el norte durante el verano y hacia el ecuador en invierno.

En las zonas templadas, desde los trópicos hasta las regiones polares, los vientos dominantes son del oeste, más variables que los alisios y se ven modificados por la presencia de los continentes. En estas regiones entran masas de aire de origen tropical o polar dando lugar a sucesivos frentes cálidos y fríos con frecuente aparición de formaciones nubosas y precipitaciones. La Península Ibérica, así como una gran parte de la costa occidental europea están bajo el dominio de vientos del oeste.

En las zonas polares se presentan generalmente altas presiones y escasas precipitaciones. Desde ellas se origina un flujo, aproximadamente de dirección este, hacia la zona de bajas presiones situada en latitudes próximas a los 60º. Las figuras 2.5 y 2.6 muestran los vientos dominantes en los meses de enero y julio.


Figura 2.5. Vientos dominantes en el mes de enero. Los vientos del oeste, aun presentando mayor discontinuidad que los alisios tropicales, tienen una gran intensidad.


Figura 2.6. Vientos dominantes en julio. Destacan los monzones, vientos húmedos que penetran en áreas tropicales del hemisferio norte, afectando especialmente a Asia.

En resumen, la circulación general atmosférica establece a escala del globo terrestre, un conjunto de direcciones de viento dominantes según se indica en la tabla 2.5.


Tabla 2.5. Direcciones de viento dominantes a escala del globo terrestre.

La figura 2.7 muestra el perfil en altura de la circulación atmosférica.


Figura 2.7. Perfil de la circulación atmosférica en altura entre polo y ecuador.

2.6. El viento

El viento es el aire en movimiento. A escala global se debe a las diferencias de temperatura que provoca la radiación solar sobre las distintas partes del globo terrestre. Las diferencias de densidad y presión originadas por estas variaciones de temperatura son la causa del movimiento de las masas de aire. En el estudio del viento se consideran las siguientes escalas:


Escala Dimensiones (km) Ejemplos
Planetaria 5.000 Celda de Hadley
Macroescala o Sinóptica 1.000 Ciclones de latitudes medias
Mesoescala 100 Tormentas y Brisas
Microescala 5 - 10 Turbulencias
Tabla 2.6. Escalas de longitud consideradas para el estudio del viento

La circulación de viento a gran escala, viento sinóptico, está causada por gradientes de presión en sistemas de macroescala (anticiclones y borrascas) y su duración puede alcanzar varios días.