Параллельные миры: Об устройстве мироздания, высших измерениях и будущем космоса

Tekst
Przeczytaj fragment
Oznacz jako przeczytane
Czcionka:Mniejsze АаWiększe Aa

Будущее Вселенной

Хотя теория Эйнштейна успешно объясняла такие астрономические явления, как искривление звездного света вокруг Солнца и легкое смещение орбиты Меркурия, все же космологические прогнозы были не совсем ясны. Положение вещей в значительной степени прояснил русский физик Александр Фридман, нашедший самые общие и реалистичные решения уравнений Эйнштейна. И в наши дни эти решения изучаются в курсе общей теории относительности. (Он получил их в 1922 году, умер через три года, и о его работе вспомнили лишь спустя много лет.)

Теория Эйнштейна в общем случае описывается рядом чрезвычайно сложных уравнений, для решения которых зачастую необходим компьютер. Однако Фридман предположил, что Вселенная динамична, а затем привел два упрощающих допущения (называемые космологическим принципом): Вселенная изотропна (она выглядит одинаково вне зависимости от того, в каком направлении мы смотрим из данной точки) и гомогенна (она однородна, в какой бы точке Вселенной мы ни находились).

Если применить эти упрощающие допущения, уравнения обретают решения. (По сути, и решение Эйнштейна, и решение де Ситтера представляли собой лишь частные случаи более общего решения Фридмана.) Примечательно, что его решения зависели лишь от трех параметров:

1. H, определяющая темп расширения Вселенной (сегодня его называют постоянной Хаббла в честь астронома, который действительно измерил расширение Вселенной).

2. Омега (Ω), определяющая среднюю плотность материи во Вселенной.

3. Лямбда (Λ) – энергия пустого космоса, или темная энергия.

Многие космологи всю свою профессиональную жизнь провели в попытках определить точное значение этих трех величин. Неуловимое взаимодействие между этими тремя постоянными определяет будущее развитие нашей Вселенной. Например, поскольку гравитация выражается силами притяжения, то плотность Вселенной (Ω) действует в качестве некоего тормоза, замедляющего расширение Вселенной. Представьте, что вы подбросили камень. В обычных условиях гравитация достаточно велика, чтобы изменить движение камня, который падает обратно на Землю. Однако если подбросить камень с достаточной силой, то он преодолеет действие гравитации и навсегда вырвется в открытый космос. Подобно камню, Вселенная первоначально расширилась в результате Большого взрыва, но материя (или Ω) действует на расширение Вселенной как тормоз, точно так же как земная гравитация воздействует в качестве тормоза для подброшенного камня.

Теперь допустим, что Λ, энергия пустого космоса, равна нулю. Пусть Ω – плотность Вселенной, разделенная на критическую плотность. (Критическая плотность Вселенной равна приблизительно 5 атомам водорода на кубический метр. Она в среднем соответствует одному атому водорода в объеме 25 баскетбольных мячей – настолько пустынна Вселенная.)

Ученые считают, что если Ω < 1, то во Вселенной недостаточно материи, чтобы обратить вспять первоначальное расширение, вызванное Большим взрывом. (Подобно примеру с подброшенным камнем: если масса Земли недостаточно велика, то камень преодолеет земную гравитацию и улетит прочь.) В результате Вселенная будет расширяться вечно, погружаясь в леденящий холод, – температуры ее приблизятся к абсолютному нулю. (Это принцип работы холодильника или кондиционера{28}. Расширяясь, газ охлаждается. Например, газ, циркулирующий в трубке вашего кондиционера, расширяется, охлаждая трубку и вашу комнату.)

Если Ω >1, то во Вселенной достаточно материи и гравитации, чтобы в конце концов изменить направление космического расширения. В результате расширение Вселенной прекратится, а затем она начнет сжиматься. (Так же как в случае с подброшенным камнем: если масса Земли достаточно велика, то камень в конце концов достигнет наивысшей точки, а затем снова упадет на Землю.) Когда звезды и галактики устремятся навстречу друг другу, температуры начнут расти. (Каждый, кто хоть раз накачивал велосипедную шину, знает, что при сжатии газ нагревается. Механическая работа накачивания воздуха преобразует энергию гравитации в тепловую.) В конце концов температуры станут настолько высокими, что всякая жизнь исчезнет, а во Вселенной начнется процесс Большого сжатия. (Астроном Кен Кросвелл называет этот процесс «от создания к сжиганию».)


Третий вариант заключается в том, что Ω = 1. Иными словами, плотность Вселенной равна критической плотности. В таком случае Вселенная балансирует на грани между двумя крайностями, но при этом она будет продолжать расширяться вечно. (Как мы увидим, этот сценарий развития вписывается в инфляционную картину.)



И наконец, существует возможность, что Вселенная после Большого сжатия снова возникнет при очередном Большом взрыве. Эту теорию называют теорией пульсирующей Вселенной.

Фридман доказал, что каждый из описанных сценариев развития определяет кривизну пространства-времени. В случае если Ω < 1 и Вселенная расширяется вечно, то, по Фридману, бесконечно не только время, но и пространство. Такую Вселенную называют открытой, то есть бесконечной во времени и в пространстве. Когда Фридман подсчитал кривизну такой Вселенной, он обнаружил, что она отрицательна. (Это похоже на поверхность седла или изогнутой трубы. Если бы жучок жил на этой поверхности, он бы обнаружил, что параллельные линии никогда не пересекаются, а внутренние углы треугольника в сумме дают меньше 180°.)

Если Ω > 1, то Вселенная в конце концов придет к Большому сжатию. Время и пространство конечны. Фридман открыл, что кривизна такой Вселенной положительна (она похожа на сферу). И, наконец, если Ω = 1, то пространство плоское, а время и пространство границ не имеют.



Фридман не только первым применил комплексный подход к космологическим уравнениям Эйнштейна, он также представил наиболее реалистичную версию Судного дня – конца Вселенной: исчезнет ли она в леденящем холоде, сгорит ли в Большом сжатии или же будет продолжать пульсировать вечно. Ответ определяется ключевыми параметрами: плотностью Вселенной и энергией вакуума.

Но в картине, нарисованной Фридманом, зияет дыра. Если Вселенная расширяется, это означает, что у нее должно было быть начало. Теория Эйнштейна ничего не сообщает о моменте этого начала. Отсутствовал именно момент создания – Большой взрыв. И в конце концов трое ученых представили нам убедительнейшую картину Большого взрыва.

Глава 3
Большой взрыв

Вселенная не просто удивительнее, чем мы предполагаем; она еще удивительнее, чем мы можем предположить.

Дж. Б. С. Холдейн


Что мы, люди, ищем в истории создания, так это способ познания мира, который откроет нам нечто, выходящее за пределы опыта, что дает нам знания и одновременно формирует нас в своих пределах. Вот что нужно людям. Вот чего просит душа.

Дж. Кэмпбелл

Обложка журнала Time от 6 марта 1995 года с изображением большой спиральной галактики M100 гласила: «Космология в хаосе». Космология погрузилась в смятение, потому что последние данные, полученные с помощью космического телескопа «Хаббл», указывали на то, что Вселенная моложе, чем ее старейшая звезда, а это с научной точки зрения невозможно. Данные показывали, что возраст Вселенной от 8 до 12 млрд лет, в то время как некоторые ученые придерживались мнения о том, что старейшие звезды насчитывают 14 млрд лет. «Вы не можете быть старше вашей мамочки», – прокомментировал этот факт Кристофер Импей из Аризонского университета.

Но раз уж вы прочитали заголовок, выделенный жирным шрифтом, то вы понимаете, что теория Большого взрыва пребывает в добром здравии. Доказательства, оспаривающие теорию Большого взрыва, основывались на данных одной-единственной галактики M100, а такой метод научных исследований весьма сомнителен. В статье утверждалось, что бреши в теории «столь велики, что сквозь них легко прошел бы космический корабль из телесериала «Звездный путь: Энтерпрайз» (Star Trek: Enterprise)». С опорой на необработанные данные телескопа «Хаббл» возраст Вселенной можно было вычислить не точнее чем с 10–20 %-ной погрешностью.

Я считаю, что теория Большого взрыва основывается не на догадках, а на результатах обработки сотен данных из нескольких источников, которые все вместе подтверждают единую непротиворечивую теорию. (В науке не все теории равнозначны. Каждый может предложить свою версию создания Вселенной, но при этом необходимо, чтобы такая теория могла объяснить результаты обработки множества собранных данных, которые легко вписываются в теорию Большого взрыва.)

Три великих «доказательства» теории Большого взрыва основаны на работе трех невероятно талантливых ученых, каждый из которых занимал ведущее положение в той области науки, которой занимался. Это Эдвин Хаббл, Георгий Гамов и Фред Хойл.

 

Эдвин Хаббл, астроном-аристократ

Теоретические основы космологии были заложены Эйнштейном, что же касается современной экспериментальной космологии, то своим созданием она практически полностью обязана Эдвину Хабблу – возможно, величайшему астроному XX столетия.

Хаббл родился в глухом местечке Маршфилд (штат Миссури). У скромного деревенского парня были тем не менее большие амбиции. Отец, адвокат и страховой агент, убеждал его заняться юриспруденцией. Однако Эдвин был покорен романами Жюля Верна и… очарован звездами. Он жадно глотал классические произведения научной фантастики, такие как «Двадцать тысяч лье под водой» и «Из пушки на Луну». Он прекрасно боксировал, тренеры уговаривали юношу профессионально заниматься боксом, чтобы со временем выйти на поединок с чемпионом мира в супертяжелом весе Джеком Джонсоном.

Хаббл сумел получить престижную стипендию имени Родса для изучения юриспруденции в Оксфорде, где начал осваивать манеры британской аристократической элиты. (Он стал носить твидовые костюмы, курить трубку, добиваться безукоризненного британского выговора и рассказывать о дуэльных шрамах, хоть и поговаривали, что он нанес их себе сам.)

Однако счастья Хаббл не испытывал. Его не вдохновляли гражданские правонарушения и судебные процессы – сердце его с детства принадлежало звездам. Он набрался храбрости и круто изменил жизнь, отправившись из Чикагского университета в Обсерваторию Маунт-Вилсон в Калифорнии, где находился самый большой в мире телескоп со 100-дюймовым зеркалом. Начав карьеру так поздно, Хаббл очень торопился. Наверстывая упущенное время, он стремился как можно быстрее найти ответы на глубочайшие и древнейшие вопросы в астрономии.

В 1920-е годы Вселенная была удобным местечком. Люди верили, что она состоит лишь из галактики Млечный Путь – туманной полосы света в ночном небе, напоминающей разлитое молоко. (Вообще, слово «галактика» происходит от греческого слова, обозначающего молоко.) В 1920 году состоялся Великий спор между астрономами Харлоу Шепли из Гарварда и Гебером Кертисом из Ликской обсерватории. Спор шел на тему «Размер Вселенной» и касался размеров галактики Млечный Путь и всей Вселенной в целом. Шепли был уверен, что Млечный Путь – это и есть вся Вселенная. Кертис считал, что за пределами Млечного Пути находятся спиральные туманности – странные, но очень красивые образования вращающейся туманной материи. (Еще в XVIII веке Иммануил Кант высказывал предположение, что эти туманности являются «островными вселенными».)

Хаббл заинтересовался этим спором. Основной проблемой было то, что определение расстояния до звезд (и до сегодняшнего дня) является для астрономов дьявольски сложной задачей. Яркая, но очень далекая звезда может выглядеть точно так же, как тусклая, но ближняя звездочка. Эта путаница послужила источником многих серьезных споров и противоречий в астрономии. Для решения проблемы Хабблу требовалась так называемая стандартная свеча – объект, который испускает одно и то же количество света в любой точке Вселенной. (Вообще, значительная часть усилий в современной астрономии направлена именно на поиск и калибровку таких стандартных свечей. Многие споры в астрономии идут именно о том, насколько надежны эти свечи.) Если бы действительно существовала такая свеча, которая горит однородно и с одинаковой интенсивностью в любой точке Вселенной, то звезда, скажем, в четыре раза менее яркая, чем стандартная, просто находилась бы вдвое дальше от Земли.

Однажды вечером, когда Хаббл анализировал фотографию спиральной туманности Андромеды, у него наступил момент озарения. Он обнаружил в пределах туманности Андромеды разновидность переменной звезды (цефеиду), их изучением ранее занималась Генриетта Ливитт. Было известно, что цефеиды постоянно «разгорались» и меркли через определенные промежутки времени, при этом время одного полного цикла зависело от яркости звезды. Чем она ярче, тем дольше цикл пульсации. Таким образом, измерив продолжительность этого цикла, можно определить яркость звезды и вычислить расстояние до нее. Хаббл подсчитал, что период изменения блеска звезды составляет 31,4 дня, что, к его большому удивлению, соответствовало расстоянию в миллион световых лет, а значит, звезда находилась далеко за пределами галактики Млечного Пути. (Светящийся диск Млечного Пути насчитывает лишь 100 000 световых лет в поперечнике. Дальнейшие подсчеты показали, что Хаббл даже недооценил действительное расстояние до туманности Андромеды, которое приближается к 2 млн световых лет.)

Проведя такой эксперимент с другими спиральными туманностями, Хаббл обнаружил, что они тоже находятся далеко за пределами Млечного Пути. Иначе говоря, ему стало ясно, что спиральные туманности представляют собой полноправные островные вселенные, а Млечный Путь – лишь одна из многих галактик на небесном своде.

Размер Вселенной вырос буквально на глазах. Оказалось, что она вовсе не состоит из одной галактики, а заполнена миллионами, а возможно, и миллиардами сестер-галактик. Вместо 100 000 световых лет в поперечнике Вселенная вдруг стала измеряться миллионами, а возможно, и миллиардами световых лет.

Уже одно это открытие обеспечило бы Хабблу законное место в пантеоне великих астрономов. Но ему самому этого было мало. Хаббл намеревался не просто определить расстояние до галактик, но и вычислить, насколько быстро они движутся.

Эффект Доплера и расширяющаяся Вселенная

Хаббл знал, что простейшим способом вычислить скорость отдаленных объектов является анализ изменений в звуке или свете, которые они испускают, так называемого эффекта Доплера. Машины издают звук, проносясь по шоссе. Полицейские пользуются эффектом Доплера для вычисления скорости, с которой вы едете. Они направляют на вашу машину луч лазера, который отражается обратно к полицейской машине. Проанализировав изменение частоты света лазера, полицейские могут вычислить скорость вашего движения.

Скажем, если звезда движется по направлению к вам, то световые волны, которые она испускает, складываются подобно мехам аккордеона. В результате длина волн испускаемого ею света становится короче. Желтая звезда будет казаться слегка синеватой (потому что волны синего цвета короче волн желтого). Подобным образом, если звезда удаляется от вас, то ее световые волны растягиваются, становятся длиннее, и желтая звезда будет казаться красноватой. Чем сильнее искажение, тем больше скорость звезды. Таким образом, если мы знаем смещение частоты звездного света, мы можем определить скорость звезды.

В 1912 году астроном Весто Слайфер обнаружил, что галактики удаляются от Земли с огромной скоростью. Вселенная не просто была изначально намного больше, чем ранее предполагалось, она еще и расширялась с огромной скоростью. Он обнаружил, что галактики имеют красное смещение, а не синее, что вызвано удалением галактик от нас. Открытие Слайфера показало, что Вселенная действительно динамична, а не статична, как предполагали Ньютон и Эйнштейн.

В те столетия, что ученые изучали парадоксы Бентли и Ольберса, никто не принимал всерьез тезис, что Вселенная расширяется. В 1928 году Хаббл совершил, можно сказать, судьбоносную поездку в Голландию, где встретился с Виллемом де Ситтером. Хаббла заинтересовало предположение де Ситтера о том, что чем дальше находится галактика, тем с большей скоростью она должна двигаться. Представьте воздушный шарик, на поверхности которого нарисованы галактики. По мере увеличения шарика в объеме «галактики», расположенные недалеко друг от друга, разносятся (разлетаются) в стороны сравнительно медленно. Чем ближе они друг к другу, тем медленнее они взаимно удаляются. Но галактики, находящиеся далеко друг от друга, разлетаются значительно быстрее.

Де Ситтер посоветовал Хабблу найти подтверждение этого явления в собранных им данных, что могло быть достигнуто анализом красного смещения галактик. Чем значительнее красное смещение галактики, тем быстрее она уносится прочь, а значит, тем дальше находится. (По теории Эйнштейна, красное смещение было вызвано не удалением галактики от Земли, а, напротив, расширением пространства между галактикой и Землей. Происхождение красного смещения он объяснял тем, что световые волны, испускаемые далекой галактикой, удлиняются в связи с расширением пространства, а потому сдвигаются в красную сторону спектра.)

Закон Хаббла

Вернувшись в Калифорнию, Хаббл последовал совету де Ситтера и приступил к поискам доказательств этого положения. Проанализировав 24 галактики, он обнаружил, что чем дальше находится галактика, тем быстрее она отдаляется от Земли, как и доказал Эйнштейн своими расчетами. Соотношение скорости и расстояния было приблизительно постоянным. Эта величина известна как постоянная Хаббла, или Н. Возможно, постоянная Хаббла является важнейшим космическим критерием, поскольку она выражает скорость расширения Вселенной.

Ученые задумались над тем, что если Вселенная расширяется, то у нее непременно должно было быть начало. Величина, обратная постоянной Хаббла, позволяет нам определить приблизительный возраст Вселенной. Представьте, что вы смотрите видеозапись взрыва. Вы видите осколки, улетающие прочь от места взрыва, и можете примерно вычислить скорость расширения. Но это также означает, что можно отмотать пленку назад, до того момента, когда все осколки еще составляют единое целое. Зная скорость расширения Вселенной, мы можем перенестись назад и вычислить примерно время, когда произошел Большой взрыв.

(По первоначальной оценке Хаббла, возраст Вселенной – около 1,8 млрд лет, что добавило головной боли целым поколениям космологов, поскольку эта цифра меньше, чем предполагаемый возраст Земли и звезд. Годы спустя астрономы поняли, что ошибки, допущенные при измерении света от переменных цефеид в туманности Андромеды, стали причиной неверного вычисления значения постоянной Хаббла. По сути, «Хаббловы войны» по поводу уточненного значения постоянной Хаббла бушевали на протяжении последних 70 лет. На сегодняшний день наиболее точную цифру дают данные, полученные спутником WMAP[12].)

В 1931 году в ходе триумфального посещения Эйнштейном Обсерватории Маунт-Вилсон он впервые встретился с Хабблом. Признавая, что Вселенная действительно расширяется, Эйнштейн назвал космологическую константу своей величайшей ошибкой. (Однако ошибка Эйнштейна способна поколебать до основания всю космологию, в чем мы убедимся в дальнейшем, когда будем говорить о данных, полученных со спутника WMAP.) Когда жена Эйнштейна осматривала огромную Обсерваторию Маунт-Вилсон, ей сказали, что благодаря этому гигантскому телескопу можно определить первоначальный вид Вселенной. Миссис Эйнштейн весело ответила: «Мой муж делает это на обороте старого конверта».

Большой взрыв

Бельгийский священник Жорж Леметр, узнавший о теории Эйнштейна, был очарован идеей, что из этой теории логически вытекает вывод о расширяющейся, имеющей начало Вселенной. Он понял, что, поскольку газы нагреваются при сжатии, Вселенная «начала времен» должна была быть невероятно горячей. В 1927 году Леметр заявил, что Вселенная, должно быть, возникла из невероятно горячего и сверхплотного «первоатома», который внезапно взорвался, дав начало расширяющейся Вселенной Хаббла. Он писал: «Эволюцию мира можно сравнить с только что закончившимся фейерверком: несколько огненных облаков, пепел и дым. Стоя на остывшей золе, мы видим, как медленно угасают солнца, и пытаемся воссоздать исчезнувшее сияние начала миров»{29}.

(Первым человеком, предложившим идею «первоатома» начала времен, был Эдгар Аллан По. Он утверждал, что материя притягивает другие формы материи, а значит, в начале времен должно было существовать космическое скопление атомов.)

Леметр посещал физические конференции и донимал ученых своей теорией. Они благодушно выслушивали его, а затем спокойно отвергали его теорию. Артур Эддингтон, один из ведущих физиков своего времени, сказал: «Как ученый я просто не верю в то, что существующий порядок вещей произошел из взрыва… Понятие "внезапного начала" для существующего порядка в природе мне противно»{30}.

 

Но настойчивость Леметра постепенно преодолела сопротивление физического сообщества. Ученый, которому предстояло стать важнейшим представителем и популяризатором теории Большого взрыва, в конце концов представил самое убедительное доказательство этой теории.

28Когда газ расширяется, он охлаждается. Для примера: в вашем холодильнике внешнее и внутреннее пространство камеры соединяется трубкой. Когда газ попадает внутрь холодильника, он расширяется, охлаждая трубку и продукты. Когда он уходит из внутренней части холодильника, трубка сокращается и нагревается. Есть также механический насос, который закачивает газ через трубку. Таким образом, задняя стенка холодильника греется, а внутреннее пространство охлаждается. В звездах все происходит в обратном порядке. Когда сила гравитации сжимает звезду, та разогревается до достижения температур, при которых начинается синтез.
12Более точные данные получены позже спутником Planck. – Прим. науч. ред.
29Lemonick, p. 26.
30Croswell, p. 37.