Геометрия скорби. Размышления о математике, об утрате близких и о жизни

Tekst
4
Recenzje
Przeczytaj fragment
Oznacz jako przeczytane
Czcionka:Mniejsze АаWiększe Aa

• Мы можем представлять себе наши жизни как траектории, пролегающие сквозь пространство повествования, параметризованные временем.

• Мы никогда не можем охватить взором (осознать, зарегистрировать) все возможные переменные; более того, мы фокусируемся только на нескольких переменных, ограничивая свое внимание подпространством малой размерности в пространстве повествования.

• Траектория нашего движения сквозь эти подпространства – то, что мы рассказываем о своей жизни самим себе, то, как мы представляем себе смысл нашей жизни, но в этом рассказе всегда недостает каких-то элементов нашего опыта.

• Необратимая утрата проявляется как разрыв, скачок через пространство повествования (или в пространстве повествования).

• Фокусируясь на определенных подпространствах, проектируя в них наши траектории, мы можем снизить видимую величину скачков и, следовательно, каким-то образом противостоять эмоциональной утрате, а может быть, и уменьшить ее воздействие. В дальнейшем мы проиллюстрируем данный тезис парой примеров.

Более того, скорбь самоподобна: скорбь утраты близкого человека содержит в себе множество более «мелких скорбей». Вы больше никогда не будете беседовать, делиться друг с другом воспоминаниями о плохом и хорошем, не прогуляетесь молча вдвоем. Каждая из этих «скорбей» – уменьшенная версия вашей реакции на утрату близкого, маленькая копия, которая может стать лабораторией для поиска полезных проекций. Спроецированная вовне, скорбь способна указать на те действия, которые помогут другим людям. Мне представляется, что при наилучшем раскладе в данное русло можно перенаправить часть этой энергии скорби. Пусть это будут не большие шаги, а маленькие, но все же шаги вперед.

Моя книга – гимн любви к покойным родным, друзьям, которых нет с нами, и котам, которых мы потеряли. А еще это гимн любви к геометрии, ярчайшей точке моих размышлений. В старости мое понимание геометрии с каждым годом всё больше стирается, добавляя разбитому сердцу еще больше разветвленных трещин.

Представленные здесь примеры из геометрии являются не просто инструкцией о том, как справиться со своей скорбью, они рисуют план действий, который помог мне. Возможно, эти вехи укажут путь, чтобы вы, с помощью моего подхода, смогли сами умерить свою боль. И, возможно, они помогут вам увидеть геометрию в своей жизни там, где раньше вы ее не замечали.

1. Геометрия

Жаль, что уже не увижу деревья, какими видел их раньше.


Представьте, что сейчас ранняя весна, вечерние сумерки, и вы сидите в каком-то малознакомом парке. Что вы увидите, подняв глаза от страницы этой книги? Вероятно, замысловатый узор из светлых и темных силуэтов, вливающихся в шероховатые столбы – стволы деревьев; толстые ветви, ветки потоньше, мелкие прутья; потрепанные обрывки плоскостей – листьев. А еще цветы и траву. Геометрические формы позволяют нам узнавать или, по крайней мере, называть то, что нас окружает.

Мы видим, как зрительно меняются формы, распознаём их движение – наблюдаем, например, как листья и ветки покачиваются от легкого ветерка.

Листья на вершине высокого дерева всё еще освещены солнцем, хотя ствол погружен в темноту. Мы обычно говорим, что тьма спускается, но здесь она как будто поднимается (а если мы придем в парк утром, то увидим, как по стволу дерева спускается рассвет). Геометрия солнца и земли являет во всей простоте то, чего мы раньше не замечали в этом мире.

На протяжении веков художники великолепно чувствовали геометрию. Приведу лишь несколько примеров. А если вы немного покопаетесь в «Гугле», то найдете еще больше.

Построенный в IX, а затем воссозданный в XIII веке дворец Альгамбра в испанской Гранаде – прекрасный образец исламского искусства и архитектуры. Множество декоративных мозаик, включая ту, что приведена ниже, являются замощениями плоскости правильными многоугольниками.


Это фигуры, которыми можно покрыть всю поверхность без наложений и пропусков, поскольку все они соприкасаются друг с другом лишь краями (частично или полностью). Клетки шахматной доски или шестиугольные пчелиные соты – наиболее известные из таких фигур, но есть и другие.

В книге Бранко Грюнбаума[17] и Джоффри Шепарда[18]«Плитки и паттерны» (этот семисотстраничный труд вполне заслуживает эпитета «всеобъемлющий») приводится огромное количество примеров не столько из области искусства, сколько из области математики[19]. Вообще существует семнадцать различных паттернов, обладающих красноречивым названием «группы орнамента». То, что таких паттернов всего семнадцать, было доказано в конце XIX века, но исламские художники знали об этих способах мощения за сотни лет до того, как русский кристаллограф и математик Евграф Фёдоров представил свое доказательство данного тезиса[20]. Иногда художники интуитивно делают открытия, которые математики проверяют и доказывают лишь многие годы спустя.




Взаимодействие геометрии и искусства отражают также подобные треугольники. Из школьных уроков геометрии мы знаем, что два треугольника подобны, если они имеют одинаковую форму, даже если у них разные размеры. Фигура называется самоподобной, если она состоит из элементов, каждый из которых подобен целой фигуре. На верхнем рисунке слева приведена фигура, состоящая из треугольников, расположенных внутри других треугольников, – это треугольник Серпинского, одна из самых известных самоподобных фигур. Чтобы увидеть ее самоподобие, обратите внимание на то, что она состоит из трех частей – нижней левой, нижней правой и центральной верхней, – каждая из которых подобна целому треугольнику. Об этом треугольнике мы поговорим подробнее в третьей главе.

Фракталы (класс фигур, впервые описанных математиком Бенуа Мандельбротом) – фигуры, построенные из частей, среди которых каждая так или иначе подобна целому. Кусочек береговой линии, если его рассматривать вблизи, выглядит так же, как ее большой отрезок с большого расстояния; листочек папоротника выглядит как сам папоротник в миниатюре; двухметровая нить ДНК сворачивается внутри клеточного ядра диаметром примерно в одну миллионную часть ее длины, повторяя один и тот же способ сложения каждый раз в меньшем масштабе. Это фракталы, которые мы наблюдаем в природе. Простейшие фракталы – самоподобные фигуры вроде треугольника Серпинского.

Круглый узор под треугольником на рисунке слева – это плиточный орнамент XIII века в одном из итальянских соборов, представляющий собой шесть фигур, напоминающих изогнутые треугольники Серпинского, окруженные кольцом треугольников поменьше[21]. (Делая данный набросок, я измерил и зарисовал основные элементы, а остальное заполнил на глаз. Это заняло немало времени. Но оригинал вырезался вручную, элемент за элементом, а потом они складывались вместе. Когда я об этом думаю, тот час, что я провел над рисунком, уже не кажется таким долгим.)

 


Художники размышляли над самоподобием многие века. Почему? Потому что оно часто встречается в природе, а художники внимательно присматриваются к ней.

Более свежим примером использования самоподобия является картина Дали «Лицо войны» (1940), изображающая бесчисленные ужасы гражданской войны в Испании. На картине мы видим лицо, в глазницах которого и во рту заключены другие лица, в чьих глазницах и ртах снова заключены лица, и так далее еще на несколько уровней вглубь. Паттерн очень напоминает треугольник Серпинского – повторение фигур, выстроенных в треугольник, только в данном случае располагающихся наверху слева и справа и внизу посредине. Картина Дали гораздо страшнее, чем мой набросок: по обеим сторонам головы без тела вьются клубки змей[22].

На предварительном эскизе картины только рот заключал в себе другое лицо. В одной из глазниц располагались кольца древесного ствола, а в другом – пчелиные соты. Дали обнаружил, что повторяемость самоподобия – наглядный способ показать бесконечность.



Чтобы показать скрытую бесконечность, Дали придумал своего рода замощение. За пять веков до него итальянский архитектор Филиппо Брунеллески открыл геометрический способ изображения того, как мы видим объекты. В 1415 году, создавая рисунок флорентийского Баптистерия, он с помощью остроумного приспособления из зеркала и крохотного отверстия, возможно, первым в эпоху Ренессанса открыл (заново) перспективную геометрию[23]. Некоторые историки-искусствоведы полагают, что древнегреческие и римские художники понимали законы перспективы; другие считают, что их представления о перспективе были примитивными. В средневековом искусстве размер фигур часто соответствовал их религиозной или политической значимости и никак не соотносился с взаимным расположением данных фигур. Идея Брунеллески состояла в том, что живопись должна изображать объекты такими, какими мы их видим. И ключом к этому является перспективная геометрия.



Но в отличие от нее четырехмерная геометрия, казалось бы, не укоренена в нашем опыте, поэтому часто она считается сложной для понимания. Прекрасным введением в этот предмет может стать книга математика Томаса Банхоффа «По ту сторону третьего измерения: геометрия, компьютерная графика и высокая размерность»[24]. Среди множества способов представления четырехмерного куба (или гиперкуба) Банхофф описывает метод развертки. Куб (то есть его поверхность, а не внутренняя сторона) имеет развертку в виде шести квадратов, что и продемонстрировано на рисунке слева. Гиперкуб, как показывает Банхофф, разворачивается в виде восьми кубов, что видно на рисунке справа. Но почему граница гиперкуба состоит из восьми кубов? Объяснение будет дано в приложении, но, возможно, вас удовлетворит такая последовательность: граница (двумерного) квадрата состоит из четырех (одномерных) отрезков, а граница (трехмерного) куба – из шести квадратов, так что границей (четырехмерного) гиперкуба являются восемь кубов.

Известно, что Дали увлекался наукой и математикой; Банхофф лично и посредством переписки обсуждал с ним вопросы четырехмерной геометрии. Искусство и геометрия – хорошие союзники. На картине Дали «Распятие» (1954), набросок с которой приведен на следующей странице, крест представлен в виде развертки гиперкуба[25].



Чем не повод начать изучать геометрию? Вы можете даже пообщаться с Дали. Ладно, пусть не с самим Дали – он умер в 1989 году, – а с какой-нибудь другой знаменитостью. Я часто тусовался за кулисами «Шуберт Театра» в Нью-Хэйвене с актером Деметри Мартином, известным своим участием в программе «Дэйли Шоу», потому что он учился у меня фрактальной геометрии.

* * *

Ради последнего примера мы перенесемся где-то на 2300 лет назад, в Александрию, на родину греческого математика Евклида. Поскольку именно он заложил основы геометрии.



Наука, которую мы изучаем в школе, называется «евклидова геометрия». Все ее разделы – построения, масса теорем о треугольниках и всё остальное – вытекают из пяти аксиоматических предпосылок, так называемых евклидовых постулатов. Первые четыре просты и очевидны: любую пару точек можно соединить прямой линией, отрезок линии можно бесконечно продлевать по прямой, любой отрезок прямой является радиусом окружности, все прямые углы равны между собой.

Пятый, называемый «аксиомой параллельности», – постулат иного рода. Он гласит: для любой точки P, не лежащей на линии L, существует только одна линия M, проходящая через P, которая не соприкасается с линией L. Мы говорим, что M параллельна L. Это логично: если хоть немного наклонить линию M в том или ином направлении, в конце концов она пересечется с линией L.

Постулат параллельности отличается от четырех других евклидовых постулатов, он более сложен. В XIX веке некоторые математики попытались доказать, что пятый постулат вытекает из первых четырех. Их попытки были обречены на провал, поскольку существуют системы геометрии – так называемая неевклидова геометрия, – для которых аксиома параллельности является ложной[26].

При создании ксилографии «Предел – круг III» (1959) М. К. Эшер использовал неевклидову геометрию[27]. Долгое время художник экспериментировал, пытаясь разными способами представить бесконечность в конечном пространстве. Шахматная мозаика подразумевает бесконечное повторение паттерна, однако в работе Эшера бесконечность не просто подразумевается.



Художник нашел решение благодаря «диску Пуанкаре», придуманному блестящим французским математиком Анри Пуанкаре. Внутри такого диска заключена вся бесконечность плоскости: по мере приближения к его краю (если говорить о приближении в смысле привычной нам евклидовой геометрии) линейка сжимается. Расстояние от центра диска до его края, измеренное линейкой Пуанкаре, будет фактически бесконечным. А площадь диска Пуанкаре также бесконечна. И это не единственное отличие от геометрии Евклида. В диске Пуанкаре прямые линии представлены двумя формами: в виде прямых линий, проходящих через центр диска, и в виде дуг окружностей, которые пересекают его границу под прямыми углами.

Погодите, но как дуги могут быть прямыми линиями? Перед нами пример одного из главных методов развития математики: взять идею из какого-либо контекста – скажем, прямые линии на плоскости – и придумать, как перенести ее в другой контекст. Какое свойство прямых линий мы можем считать общим? В евклидовой геометрии прямая линия – кратчайшее расстояние между двумя точками. Давайте это используем. Вероятно, вы уже знакомы с этим общим свойством, если летали на большие расстояния. Дугой большого круга сферы является любая окружность, центр которой совпадает с центром данной сферы. Все меридианы – дуги большого круга, тогда как единственная параллель, являющаяся такой дугой, – экватор. На поверхности сферы кратчайшее расстояние между двумя точками – дуга большого круга, проходящая через эти две точки. Натяните резинку между двумя точками на мяче: это будет кратчайший путь на поверхности сферы между этими двумя точками. И такой кратчайший путь является дугой большого круга.

Для сокращения времени полета и расхода топлива траектории дальних перелетов пролегают по дугам большого круга. Например, Лос-Анджелес находится на 34,1° с. ш., Москва на 55,8° с. ш., однако полет между этими городами пролегает через север Гренландии, около 70° с. ш.

Но вернемся к диску Пуанкаре. Если измерять расстояния линейкой Пуанкаре, кратчайший путь между двумя точками является либо отрезком диаметра диска, либо дугой окружности, перпендикулярной границе диска. С точки зрения диска Пункаре такие линии будут прямыми.

Почему это неевклидова геометрия? Мы видим, что на диске Пуанкаре для любой точки P, не лежащей на заданной линии L, существует множество – на самом деле, бесконечное множество – линий, проходящих через точку P и параллельных линии L (другими словами, не пересекающихся с линией L). Примерами таких линий являются показанные ниже линии M и M'.



Возможно, из школьного курса геометрии вы знаете несколько теорем (помните: две стороны и угол между ними?), которые доказывают, что два треугольника равны, то есть одинаковы по форме (подобны) и по размеру. На диске Пуанкаре всё немного проще: подобные треугольники всегда равны. Следовательно, если посмотреть на рисунок Эшера, рыбки, которые становятся всё меньше по мере приближения к краю диска, при измерении линейкой Пуанкаре оказываются одинакового размера.

 

Эшер увидел изображение диска Пуанкаре в одной из работ математика Гарольда Коксетера[28], а затем в письмах они вместе обсуждали неевклидову геометрию. Хотя в работе «Предел – круг III» Эшер допустил некоторую художественную вольность (как указал Коксетер, кривые, изображенные Эшером, не совсем неевклидовы), в ней прослеживается математическая идея.

Пару слов о моем наброске. У Эшера рисунок с рыбками продолжается до самого края, хоть и не беспредельно, поскольку тогда ему потребовалось бы изобразить бесконечное количество рыбок. Однако у Эшера рисунок гораздо более скрупулезный, нежели у меня. И я должен напомнить, что он работал в технике, не прощающей никаких ошибок. Я уже говорил, какой кропотливой работы потребовало создание мозаики с треугольниками Серпинского в соборе Альгамбры. И всё же, если какая-то плитка была вырезана неправильно, мастер в любой момент мог вырезать другую при условии, что у него было достаточно камня. Однако Эшер работал в технике резьбы по дереву, каждую рыбку он вырезал из одного куска древесины. Одна ошибка могла испортить всю работу, а не какую-то крохотную деталь. Подумайте об этом, когда вам нужно будет набраться терпения.

* * *

Геометрия – способ структурирования наших представлений о мире, о его формах и динамике. Но нет ли во всем этом большой доли случайности, шаткой неопределенности? Могли ли у нас сложиться совсем иные представления о мире? Если бы фрактальная геометрия Мандельброта была открыта раньше, чем геометрия Евклида, производили бы мы то, что производим сейчас? Думаете, это вопрос из области фантастики? Тогда посмотрите, как повторяются разветвления нашей легочной, кровяной и нервной систем, как складываются нити ДНК, подумайте, как огромные по площади ткани легких или кишечника умещаются в небольших объемах человеческого тела. Фрактальная геометрия придумана эволюцией и используется ею. Если бы вместо того, чтобы пытаться достичь «небесного совершенства», навязанного церковным истолкованием работ Евклида и Аристотеля, люди внимательнее присмотрелись к геометрии природы, наши творения ныне были бы абсолютно иными.

Можно ли сказать, что в совершенно несхожих космологических представлениях различных культур отразились разные восприятия, разные геометрии? Или это просто альтернативные пути, обусловленные историческими нарративами? Но если не существует одной-единственной геометрии, одной-единственной истории – если мир не един, – наши представления о нем должны определяться разными наборами категорий.

Именно здесь находится ключевая точка нашего рассуждения. Действительно ли мир такой, каким мы его представляем, или он другой? Должен ли мир быть лишь чем-то одним, или он являет собой множество? Если у нас уже есть определенное представление о мире, оно навсегда отсекает возможности увидеть его другими способами? В квантово-механической модели множественности миров, наглядно описанной в прекрасной книге Шона Кэрролла[29] «Квантовые миры и возникновение пространства-времени», любое наблюдение за любой из частиц расщепляет Вселенную на ответвления, у каждого из которых будет свой результат измерения, и эти ветви не могут между собой сообщаться[30]. Таким образом, в физике мы имеем модель, где каждый выбор отсекает от нас все другие. Но действует ли данное разделение в мире людей, в мире облаков, в кошачьем мире? В дальнейшем мы об этом поразмышляем.

Это возвращает нас к теме скорби, реакции на безвозвратную утрату. Неужели вдумчивое изучение геометрии необратимым образом накладывает печать на наши представления о формах мироздания? В математике фантазия гораздо сильнее приближена к исследованию, чем в естественных науках. Здесь, как и в любой науке, необходимо приобрести базовые навыки. Однако математика избавляет от необходимости придумывать эксперименты, монтировать оборудование, проходить этическую экспертизу тех, кто намерен ставить опыты на живых объектах, подвергаться проверкам на безопасность и затем проводить эксперимент, собирать данные, и расшифровывать его результаты. В математике вы просто начинаете размышлять. Ну хорошо, в наше время порой вам приходится писать код, запускать процесс моделирования, но это тоже умственный процесс, а не физический, если не считать набора кода на клавиатуре компьютера. Мы изучаем миры, находящиеся у нас в голове. Исследуя какой-то один мир, мы отсекаем все остальные потенциальные миры, и эта утрата становится источником скорби при изучении математики. Это, конечно, не такая большая скорбь, какую мы ощущаем, потеряв близкого человека или питомца, но, тем не менее, тоже горькое чувство.

Вы можете подумать: как это глупо. Да и что такое – утрата? Разве мы не можем изменить направление своих мыслей в любой момент? В какой-то степени да, но стоит нам посмотреть на мир новым взглядом, и мы уже не можем избавиться от собственного ви́дения. Для наглядности приведу пример из фрактальной геометрии. Если вы не фанат геометрии, можете заменить ее любой другой столь же сложной и утонченной сферой деятельности по вашему вкусу.

Пока что не обращайте внимания на линии решетки, расчерчивающие рисунок на следующей странице. По-вашему, это простая или сложная фигура? Если она кажется вам простой, значит, вы можете точно объяснить, как ее нарисовать. Готовы?

А теперь посмотрите на решетку. Обратите внимание, что пять квадратов пусты. Оказывается, это почти всё, что нам требуется знать: стоит присмотреться к этим пустым квадратам, и мы сможем дорисовать всю фигуру. Это совсем несложно.



Начнем с решетки четыре на четыре квадрата. Сначала оставим пять пустых квадратов и полностью закрасим остальные одиннадцать. Получим картинку, изображенную на следующей странице первой в верхнем ряду. Затем уменьшим ее вдвое, скопируем и разместим одну копию слева, а две другие над первыми двумя. Результат представлен на картинке в центре первого ряда. Наконец из данной картинки вырежем пять больших квадратов, как это сделано на первой картинке. Получилась картинка справа.




Повторяем второй и третий шаги, каждый раз изменяя только что созданную картинку: берем последнее полученное изображение; уменьшаем его в два раза; копируем и размещаем одну копию слева, а две другие над первыми двумя и, наконец, вырезаем пять квадратов, как это было на самой первой картинке. На предыдущей странице вы видите, как начальное изображение изменяется на протяжении первых пяти повторений данного процесса. С каждым повторением фигура приближается к той, которую я показал вам в самом начале. Можно заметить, что малые элементы фигуры похожи на всю фигуру в целом. Если вы решили, что перед вами фрактал, так и есть[31].

Можно это представить как «фрактальную скуль-птуру». Говорят, Микеланджело утверждал, будто внутри каждого камня заключена скульптура. Мы только что продемонстрировали – для создания данного фрактала нужен лишь набор пустых квадратов и ряд повторяющихся действий. Получившаяся фигура может казаться сложной, но с этой точки зрения она проста. Не стоит удивляться, что то, насколько сложным выглядит объект, зависит от инструментов, с помощью которых мы его анализируем.

Стоит научиться распознавать фрактальные элементы объектов, и ваше восприятие поменяется навсегда. За многие годы я получил десятки мейлов от приятелей моих студентов с вариациями одной и той же жалобы: «Каждый раз, когда мы идем на занятия, мой сосед по комнате замечает какой-нибудь папоротник, или облако, или трещину на дорожке, и наш разговор прерывается восклицанием: „Это фрактал! Это фрактал!“ Прекратите уже рассказывать об этих фракталах! Сколько хороших бесед вы разрушили». Меня обвиняют в том, что я засоряю умы гуманитариев геометрией.

176* Бранко Грюнбаум (1929–2018) – израильский и американский математик, один из создателей теории абстрактных многогранников.
187* Джоффри Шепард (1927–2016) – английский математик, доктор философии Бирмингемского университета.
191. Grünbaum B., Shephard G. Tilings and Patterns. New York: Freeman, 1987.
202. Доказательство того, что существует ровно семнадцать групп орнаментов, было представлено в статье: Фёдоров Е. С. Симметрия на плоскости // Записки Императорского Санкт-Петербургского Минералогического общества. Т. 28. СПб.: Типография Императорской Академии Наук, 1891. С. 345–390. Зачем нам нужно это доказательство? Не будь его, оставалась бы вероятность, что существует некая восемнадцатая группа орнаментов (узор замощения, предлагающий новую форму мозаики), скрывающаяся где-то в складках геометрии и доселе оставшаяся незамеченной.
213. Собор Благовещения Святой Марии в городе Ананьи (Италия) был построен в 1104 году. Внутренняя мозаика, включая узор из треугольников Серпинского, показанный на рисунке в тексте, была добавлена столетием позже. Этьен Гийон и Юджин Стэнли (Guyon E., Stanley H. E. Fractal Forms. Haarlem: Elsevier, 1991) привлекли внимание к фрактальным элементам мозаики. См. фото на: https://commons.wikimedia.org/wiki/File: Anagni_katedrala_04.JPG
224. Лучшее изображение картины «Лицо войны» вы можете увидеть в Википедии (https://en.wikipedia.org/wiki/The_Face_of_War) или на с. 97 книги Робера Дешарна «Дали» (Descharnes R. Dalí. New York: Abrams, 1985), которая также включает предварительный анализ этой картины.
235. Видеоролик «Линейная перспектива: эксперимент Брунеллески» (https://www.youtube.com/watch?v=bkNMM8uiMww) демонстрирует данный эксперимент с зеркалом.
246. Книга Банхоффа «По ту сторону третьего измерения: геометрия, компьютерная графика и высокая размерность» (Banchoff T. Beyond the Third Dimension: Geometry, Computer Graphics, and Higher Dimensions. New York: Freeman, 1990) могла бы называться «Тринадцать способов увидеть гиперкуб» (прошу прощения у Уоллеса Стивенса и у Генри Луиса Гейтса мл.).
257. Источники изображения картины Дали «Распятие. Гиперкубическое тело»: Википедия (https://en.wikipedia.org/wiki/Crucifixion_(Corpus_Hypercubus)); книга Банхоффа «По ту сторону третьего измерения», с. 105; и книга Дешарна «Дали», с. 119. В книге Банхоффа на с. 110 есть фотография, на которой Банхоффа разговаривает с Дали.
268. Хорошие работы по неевклидовой геометрии: Coxeter H. S. M. Non-Euclidean Geometry, 5th ed. Toronto: University of Toronto Press, 1965; Greenberg M. Euclidean and Non-Euclidean Geometries: Development and History, 4th ed. New York: Freeman, 2007. Статья в Википедии (https://en.wikipedia.org/wiki/Non-Euclidean_geometry) также может стать неплохой отправной точкой. А на странице https://brewminate.com/escher-and-coxeter-a-mathematical-conversation/ рассказывается о переписке Маурица Эшера и Гарольда Коксетера.
279. Репродукции «Предела круга III» Эшера можно найти на Википедии https://en.wikipedia.org/wiki/Circle_Limit_III и в книге Esher M. C. M. C. Esher: 29 Master Prints. New York: Abrams, 1983.
288* Гарольд Коксетер (1907–2003) – канадский математик британского происхождения. Считается одним из крупнейших геометров XX века.
299* Шон Кэрролл (род. 1966) – американский физик-теоретик и космолог. Специализируется на исследованиях темной энергии и общей теории относительности.
3010. Carroll S. Something Deeply Hidden: Quantum Worlds and the Emergence of Spacetime. New York: Dutton, 2019. Рус. пер.: Кэрролл Ш. Квантовые миры и возникновение пространства-времени [2021] / пер. О. Сивченко. СПб.: Питер, 2022.
3111. Некоторые подробности и дополнительные примеры фракталов, созданных с помощью памяти, приведены в разделе 2.5 книги Майкла Фрейма и Амелии Урри «Фрактальные миры» (Frame M., Urry A. Fractal Worlds: Grown, Built, and Imagined. New Haven, CT: Yale University Press, 2016).
To koniec darmowego fragmentu. Czy chcesz czytać dalej?