Ключевые идеи книги: Элегантная Вселенная. Cуперструны, скрытые измерения и поиски окончательной теории. Брайан Грин

Tekst
1
Recenzje
Przeczytaj fragment
Oznacz jako przeczytane
Jak czytać książkę po zakupie
Nie masz czasu na czytanie?
Posłuchaj fragmentu
Ключевые идеи книги: Элегантная Вселенная. Cуперструны, скрытые измерения и поиски окончательной теории. Брайан Грин
Ключевые идеи книги: Элегантная Вселенная. Cуперструны, скрытые измерения и поиски окончательной теории. Брайан Грин
− 20%
Otrzymaj 20% rabat na e-booki i audiobooki
Kup zestaw za 25,56  20,45 
Ключевые идеи книги: Элегантная Вселенная. Cуперструны, скрытые измерения и поиски окончательной теории. Брайан Грин
Audio
Ключевые идеи книги: Элегантная Вселенная. Cуперструны, скрытые измерения и поиски окончательной теории. Брайан Грин
Audiobook
Czyta Дмитрий Евстратов
12,78 
Szczegóły
Ключевые идеи книги: Элегантная Вселенная. Cуперструны, скрытые измерения и поиски окончательной теории. Брайан Грин
Czcionka:Mniejsze АаWiększe Aa

Ключевые идеи книги: Элегантная Вселенная. Суперструны, скрытые измерения и поиски окончательной теории. Брайан Грин

Автор:



Brian Greene



Оригинальное название:



The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory



www.smartreading.ru



Как выглядел мир до теории струн

До появления теории струн физика основывалась на двух ключевых теориях – теории относительности и квантовой теории. Первая описывала макромир (галактики, звезды, планеты), вторая – микромир (атомы, протоны, нейтроны).



Макромир: путешествия во времени возможны

До XX века ученые думали, что мир управляется по законам Ньютона. Тот полагал пространство и время неизменными в любой точке Вселенной, а движение Земли вокруг Солнца объяснял тем, что наша планета притягивается к звезде силой тяжести. Но в 1905 году сотрудник бернского патентного бюро Альберт Эйнштейн перевернул представления о мироздании с ног на голову.



По Эйнштейну, нет никакого абсолютного пространства и времени, их характеристики зависят от конкретного наблюдателя.

Более того, время в теории относительности – это четвертое измерение реальности. Ключевое значение тут имеет скорость света, равная 299 792 458 м/с. Чем быстрее мы движемся в пространстве, тем медленнее движемся во времени.

На космическом корабле, который движется со скоростью света, весь Млечный Путь можно было бы пролететь за 50 лет, а на Земле за это время прошло бы 3 млн лет.

Этот эффект наблюдается и на Земле, просто он невероятно мал. Перелетев всю Россию из конца в конец, вы выйдете из самолета на одну стомиллионную долю секунды моложе тех, кого вы покинули.



Кроме того, Эйнштейн переосмыслил гравитацию. Строго говоря, именно он и понял, что такое гравитация. Ньютон научился ее высчитывать, но не оставил описания того, что же она представляет собой. Как Солнце удерживает Землю на расстоянии 151 млн км?

Эйнштейн предположил: пространство – гладкое, как батут или простыня, а все космические объекты «проминают» его. Солнце не прилагает никакой силы, оно своей массой растягивает окружающее пространство, как бы оставляя в нем вмятину, а Земля катается внутри этой вмятины.

Луна вращается вокруг Земли по тому же принципу. Гравитация – не самостоятельная сила, а свойство пространства.



Микромир: кипящий бульон вероятностей

О том, что мир создан из мельчайших частиц, догадывались уже древние греки, они и придумали слово «атом», что означает «неделимый».

В XX веке оказалось, что атомы все-таки делимые, и еще как. Они состоят из электронов, что вращаются вокруг атомного ядра, ядро, в свою очередь, состоит из нейтронов и протонов, а те – из еще более мелких частиц, кварков.



Вращение электронов вокруг атомных ядер очень похоже на вращение планет вокруг Солнца, но аналогия эта обманчива: в микромире совсем другие законы.

Прежде всего, физику-наблюдателю никогда не удастся поймать электрон. Если он точно измерит его скорость, то пострадает точность местоположения электрона; если удается уточнить местоположение, то неточной окажется скорость.

Можно лишь описать вероятное положение электрона. С точки зрения привычной нам реальности это очень странно. Мы ведь точно знаем, что можем рассчитать, допустим, траекторию пули, зная ее скорость, направление и прочие характеристики. Если другой человек корректно пересчитает наши расчеты с теми же данными, результаты совпадут.

Но в микромире мы можем рассчитать лишь вероятность траектории электрона, и у двух наблюдателей она всегда будет разной. Следует допустить, что элементарная частица находится не в одной конкретной точке, а одновременно где-то еще (физики так и сделали).

Так что если бы мы взглянули на ядро атома, оно меньше всего походило бы на планету, вокруг которой степенно вращается спутник-электрон. Скорее, ядро предстало бы перед нами в туманной дымке: этот туман создавался бы мельканием неуловимых электронов.



Это чрезвычайно беспокоило Эйнштейна: он не признавал мира, в котором ключевую роль играет вероятность.

Его знаменитая фраза «Бог не играет в кости» связана именно с отрицанием роли вероятности.

Но именно по таким правилам живет микромир. Кстати, в нем теория относите

To koniec darmowego fragmentu. Czy chcesz czytać dalej?