Za darmo

Makers of Modern Medicine

Tekst
0
Recenzje
iOSAndroidWindows Phone
Gdzie wysłać link do aplikacji?
Nie zamykaj tego okna, dopóki nie wprowadzisz kodu na urządzeniu mobilnym
Ponów próbęLink został wysłany

Na prośbę właściciela praw autorskich ta książka nie jest dostępna do pobrania jako plik.

Można ją jednak przeczytać w naszych aplikacjach mobilnych (nawet bez połączenia z internetem) oraz online w witrynie LitRes.

Oznacz jako przeczytane
Czcionka:Mniejsze АаWiększe Aa

His studies on sugar logically led Bernard to the investigation of heat production and heat regulation in the human body. Glycogen, the sugary substance produced by the liver, occurs abundantly in all the muscles of the body, and it was evident that muscular movement leads to its consumption and the consequent production of heat. Sugar is a carbon-containing substance, and its combustion always produces energy. The question of heat regulation was a much more complicated problem. Heat is always being produced in the human body and always being given off. Very different amounts of heat are required to keep up the temperature of the human body in the winter and summer seasons. Near the pole or at the equator man's temperature in health is always the same. To secure this identity of temperature some very delicately balanced mechanism is required. Without the most nicely adjusted equilibrium of heat production and dissemination human tissues would soon freeze up at a temperature of 70° below zero, or the albumin of the body fluids and muscular tissue coagulate at a temperature above 110° F.

While engaged in the investigation of this interesting problem Claude Bernard found that the cutting of the sympathetic nerves in the neck of a rabbit was followed by increased heat on the side of the head supplied by the nerve, and that this increased heat coincided with heightened sensibility and greater blood-supply in the parts affected. Here was an important factor in heat regulation laid bare. It was evident that the sympathetic nerve trunk supplied filaments to the small arteries, and that when these nerves no longer acted, as after the cutting of the nerve trunk, these arteries were no longer controlled by the nervous system and became dilated. The presence of more blood than usual in the tissues and its slower flow gave occasion to more chemical changes in the part than before, and consequently to the production of more heat.

These vasomotor nerves, as they have been called, because they preside over the dilatation and contraction of the walls of the bloodvessels (vasa) of the body, are now known to play an important rôle in every function. When food enters the stomach, it is dilatation of the gastric arteries, brought on by the reflex irritation of the presence of food, that causes the secretion of the gastric juices necessary for digestion. It is the disturbance of this delicate nervous mechanism that gives rise to the many forms of nervous dyspepsia so common in our day. It is its disturbance also that makes digestion so imperfect at moments of intense emotion, or that makes severe mental or bodily exertion after the taking of food extremely inadvisable. The vasomotor nerves, however, control much more than heat processes and digestion. The familiar blushing is an example of it, and blushes may occur in any organ. Excitement paralyzes the efforts of some individuals, but renders others especially acute. It is probable that the regulation of the blood-supply to the brain has much to do with this. While one student always does well in an oral examination, another, as well gifted, may always do poorly. Just as there are those who cannot control the vasomotor nerves of the face, and blush furiously with almost no provocation, so there are brain-blushers in whom the rush of blood interferes with proper intellection. On the other hand, there are those, and they are not always unaware of it, in whom the slight disturbance of the facial vasomotor mechanism only gives rise to a pleasing heightened color, and in the same way the increased blood-supply to the brain only gives them more intellectual acumen.

These two discoveries by Bernard–the formation of sugar by the liver and the nervous vasomotor mechanism–are, in their far-reaching application and their precious suggestiveness for other investigators, the most significant advances in physiology of the nineteenth century. They are directly due to a great imaginative faculty informing a most fertile inquiring spirit. Bernard was very different from his master, Magendie, in his applications of the experimental method. Magendie's researches were made more or less at random in the great undiscovered regions of physiology. He made his experiments as so many questions of nature. He cared not what the answer might be. He seldom had an inkling beforehand where his experiments might carry him. As he said himself, he was a rag-picker by the dust-heap of science, hoping to glean where others had missed treasures, and not knowing what his stick might turn up next. Bernard's experiments were always made with a definite idea as to what he sought. Not infrequently his pre-conceived theory proved to be a mistake. It is of the very genius of the man that he was able to recognize such errors, and that he did not attempt to divert the results of experiments so as to bolster up what looked like eminently rational theories. The imaginative faculty that had come so near perverting him to literature was a precious source of inspiration and initiative in his scientific work. It was not followed as an infallible guide, however, but only as a suggestive director of the course investigation should take.

Besides the important discoveries made by Bernard there are two minor investigations, successfully accomplished, that deserve a passing word. To Claude Bernard we owe the use of curare in physiological experimentation. Curare is an Indian arrow poison which absolutely prevents all muscular movement. If artificial respiration is kept up, however, the animal lives on indefinitely, and no motion will disturb the progress of the most delicate experiment. In Bernard's time it was thought that the drug did not affect the sensory nervous system at all, and that as a consequence, though absolutely immobile, the animal might be suffering the most excruciating pain. We now know that the sensory system is also affected, and that the animal in these experiments suffers little if at all.

Bernard's investigation of the effect of carbonic oxide gas will probably be of more practical benefit to this generation and the next than it was to his. Like most of Bernard's discoveries, this one threw great light on important questions in physiology quite apart from the subject under investigation. Carbonic oxide is the gas produced by incomplete combustion of coal. The blue flames on the surface of a coal fire when coal is freshly added are mainly composed of this gas in combustion. From burning charcoal it is given off in considerable quantities. The gas is extremely poisonous. Unlike carbon dioxide, which does harm by shutting off the supply of oxygen, carbonic oxide is actively poisonous. After death the blood of its victims, instead of being of a dark reddish-blue, is of a bright pinkish-red. Bernard's study of the change that had taken place in the blood showed that the hemoglobin of the red blood-cells had united with the carbonic oxide present in the lungs to form a stable compound. The usual interchange of oxygen and carbon dioxide in the tissues could not take place. The combinations formed between oxygen and carbon dioxide and the hemoglobin of the blood readily submit to exchanges of their gaseous elements, and so respiratory processes are kept up.

Before Bernard's discovery it was thought that the respiratory oxygen was mostly carried dissolved in the blood-plasma–that is, in the watery part of the blood–or at least that its combination was a physical rather than a chemical process. This idea was overthrown by the discovery that the carbonic oxide combination with hemoglobin was very permanent. The rôle of the red blood-cell in internal respiration took on a new importance because of the discovery, and the comprehension of anaemic states of the system became much easier.

About the middle of his career Bernard suffered from a succession of attacks of a mysterious malady that we now recognize to have been appendicitis. Once at least his life was despaired of, and recurring attacks made life miserable. After a year of enforced rest on the old farm of his boyhood, now become his own, he seems to have recovered more or less completely. His health, however, was never so robust as before. Toward the end of his life he lived alone. His wife and daughters were separated from him, and one of the daughters devoted her time and means to suffering animals in order to make up, as she proclaimed, for all her father's cruelty.

Bernard lived almost directly opposite to the Collège de France, in a small apartment in the rue des Ecoles. An old family servant took care of him, and his life was one of uttermost simplicity, devoted only to science. Once at court, in 1869, Napoleon III insisted on knowing, after an hour's conversation with him, what he could do for him. Bernard asked only for new facilities for his experimental work, and new apparatus and space for his laboratory.

Honors came to him, but left him modest as before. He was elected a member of the French Academy–one of the forty immortals. Only five times in the history of the Academy has the honor of membership been conferred upon a medical man. Before Bernard, Flourens, the father of brain physiology, had occupied a fauteuil, while Cabanis and Vicq d'Azyr are two other names of medical immortals.

Bernard was elected to the 24th fauteuil, which had been occupied by Flourens, and according to custom had to pronounce his predecessor's panegyric. The conclusion of his address was the expression: "There is no longer a line of demarcation between physiology and psychology." Physiology had become the all-ruler for Bernard in human function, and he drifted into what would have been simple materialism only for the saving grace of his own utter sanity, his active imagination, and the unconscious influence of early training. During his most successful years of scientific investigation, wrapped up in his experiments and their suggestions, Bernard was drawn far away from the spiritual side of things. This partial view of man and nature could not endure, however. In an article on Bernard in the Revue des Questions scientifiques for April, 1880, Father G. Hahn, S. J., says of him: "A man of such uprightness of character could not be allowed to persist to the end in this restless skepticism. His mental condition was really a kind of vertigo caused by the depths of nature that he saw all around him. At the threshold of eternity he came back to his true self and his good sense triumphed. The great physiologist died a true Christian."

 

Bernard was one of the great thinkers of an age whose progress in science will stamp it as one of the most successful periods of advance in human thought. He accomplished much, but much more he seemed to have divined. He seldom gave out the slightest hint of the tendencies of his mind, or of his expectations of discovery in matters of science, until fully satisfied that his theoretic considerations were justified and confirmed by observation and experiment. In one thing, however, he allowed favored friends to share some of his anticipations, and the notes published after his death show that he was on the very point of another great discovery in biology which has since been made. He was a firm friend of Pasteur's, and had ably seconded the great chemist-biologist's efforts to disprove spontaneous generation. Bernard's demonstration that air passed through a tube heated red hot might be suffered with impunity to come in contact with any sort of organic material, yet would never cause the development of germ life, was an important link in the proof that if life were carefully destroyed, no life, however microscopic in character, would develop unless the seeds of previously existent life were somehow brought in contact with the organic matter.

With regard to fermentation, too, Bernard was for many years in close accord with Pasteur, who taught that fermentation was the result of the chemical activity of living cells, the ferments. Toward the end of his life Bernard came to the view, however, that the action of ferments was really due to the presence in them of chemically active substances called diastases. These substances are of varied chemical composition, but each one has a constant formula. Their presence in a fermentescible solution is sufficient of itself, even in the absence of living cells, to bring about fermentation. It has since been shown that after this substance is removed from ferment-cells by pressure, and the liquid carefully filtered so that absolutely no cells remain, fermentation will yet take place.

This does not disprove the necessity for life to produce the diastases originally, though it advances science a step beyond the theory that it is the actual vital interchange of nutritious substances within the ferment-cell that causes fermentation. With each step of advance in biological science the mystery of life and its processes deepens.

No one has done more to bring out the depths there are in vital function than Bernard. His early training was of the type that is, according to many prominent educators of our day, least calculated to develop originality of view, or capacity for initiating new lines of thought. Our pedagogic Solons would claim that the narrow orthodoxy that wrapped itself around his developmental years must surely stifle the precious genius for investigation that was in him. It is due, on the contrary, very probably to the thorough conservatism of his early training and the rounded fulness of the mental development acquired under the old system of classical education, that we have to chronicle of Bernard none of the errors by exaggeration of personal bias that are so common among even great scientific men. Few successful men have ever owed less to luck or to favoring circumstances in life. He was in the best sense a self-made man, and he owed his success to a large liberality of mind that enabled him to grasp things in their true proportions. With an imaginative faculty that constantly outstripped his experimental observations he was singularly free from prejudgment and was able to control his theories by what he found, never allowing them to warp his powers of observation. Bernard is without doubt the greatest example of the century that a fully rounded youthful training is much more favorable to successful investigation than the early specialization which is falsely supposed to foster it.

PASTEUR, FATHER OF PREVENTIVE MEDICINE

More than two hundred and fifty years ago, Descartes, the most original mind of the modern age, who, more than any other thinker, has determined the course both of speculative and of scientific inquiry, declared that if any great improvement in the condition of mankind was to be brought about, medicine would provide the means, and what he foresaw we see.

--Bishop Spalding.

Louis Pasteur is the most striking figure in nineteenth century science. In biology, in chemistry, in physics, in medicine and surgery, and in the important practical subjects of fermentation, spontaneous generation and sanitation, he has left landmarks that represent great advances in science and starting-points for new explorations into the as yet unmapped domain of scientific knowledge. His was a typically scientific mind. His intuitions were marvellous in their prophetic accuracy, yet were surpassed by his wonderful faculty for evolving methods of experimental demonstrations of his theories. His work has changed the whole aspect of biology and medicine, and especially the precious branches of it that refer to the cure and treatment of disease.

To such a man our generation owes a fitting monument. It has been given him. He was modest in life with the sincere modesty of the true man of science, who knows in the midst of great discoveries that he is only on the edge of truth, who realizes that "abyss calls to abyss" in the world of knowledge that lies beyond his grasp. Pasteur's monument, very appropriately for a man of his practical bent, is no idle ornamental memorial. It is a great institution for the perpetual prosecution of his favorite studies and for the care of patients suffering from the diseases to whose investigation the best part of his life was devoted.

In this Institut Pasteur repose his ashes. They find a suitable resting-place in a beautiful chapel. Situate just below the main entrance a little lower than the ground floor, of the institute proper, this chapel seems to form the main part of the foundation of the building. It is symbolic of the life of the man in whose honor it was erected. He who said, "The more I know the more nearly does my faith approach that of the Breton peasant. Could I but know it all my faith would doubtless equal even that of the Breton peasant woman." On a firm foundation of imperturbable faith this greatest scientific genius of the century raised up an edifice of acquisitions to science such as it had never before been given to man to make.

Above the entrance of this chapel-tomb, and immediately beneath the words "Here lies Pasteur," is very fittingly placed his famous confession of faith:

"Happy the man who bears within him a divinity, an ideal of beauty and obeys it; an ideal of art, an ideal of science, an ideal of country, an ideal of the virtues of the Gospel."12

When we turn to the panegyric of Littré in which the words occur we find two further sentences worth noting here: "These are the living springs of great thoughts and great actions. Everything grows clear in the reflections from the infinite."13

These words are all the more striking from the circumstances in which they were uttered. When a vacant chair (fauteuil) in the French academy is filled by the election of a new member of the Forty Immortals, the incoming academician must give the panegyric of his predecessor in the same chair. Pasteur was elected to the fauteuil that had been occupied by Littré. Littré, who by forty years of unceasing toil made a greater dictionary of the French language than the Academy has made in the nearly two hundred years devoted to the task, was the greatest living positivist of his day. He and Pasteur had been on terms of the greatest intimacy. Pasteur's appreciation of his dead friend is at once sincere and hearty, but also just and impartial. Littré had been a model of the human virtues. Suffering had touched him deeply and found him ever ready with compassionate response. His fellow-man had been the subject of his deepest thoughts, though his relationship to other men appealed to him only because of the bonds of human brotherhood. Pasteur called him a "laic" saint. For many of us it is a source of genuine consolation and seems a compensation for the human virtues exercised during a long life that the great positivist died the happy death of a Christian confident in the future life and its rewards.

But Pasteur himself rises above the merely positive. The spiritual side of things appeals to him and other-worldliness steps in to strengthen the merely human motives that meant so much for Littré. Higher motives dominate the life and actions of Pasteur himself. In the midst of his panegyric of the great positivist the greatest scientist of his age makes his confession of faith in the things that are above and beyond the domain of the senses–his ideals and his God.

There is said to exist a constant, unappeasable warfare between science and religion. Perhaps it does exist, but surely only in the narrow minds of the lesser lights. In no century has science developed as in the one that has just closed. Faraday the great scientific mind of the beginning of the century, said, at one of his lectures before the Royal Academy of Sciences of England, when the century was scarcely a decade old: "I do not name God here because I am lecturing on experimental science. But the notion of respect for God comes to my mind by ways as sure as those which lead us to physical truth." At the end of the century the monument of a great man of science is a chapel with an altar on which the sacrifice of Him that died for men is commemorated on Pasteur anniversaries.

The walls of the chapel are inscribed with the scientific triumphs of the master whose ashes repose here. It is a striking catalogue. Each heading represents a great step forward in science:

  1848, Molecular Dissymmetry.

  1857, Fermentations.

  1862, So-called Spontaneous Generation.

  1863, Studies in Wine.

  1865, Diseases of Silk Worms.

  1871, Studies in Beer.

  1877, Virulent Microbic Diseases.

  1880, Vaccinating Viruses.

  1885, Prophylaxis of Rabies.

Apparently these various subjects are widely separated from one another. It might seem that Pasteur was an erratic genius. As a matter of fact, each successive subject follows its predecessor by a rigid logic. Pasteur's life-work can be best studied by a consideration of these various topics and an appreciation of the advance made in each one.

Pasteur was first of all and always a chemist! He was interested in chemistry from his early years. In the decade from 1840 to 1850 organic chemistry–or as we prefer to call it now, the chemistry of the carbon compounds–was just opening up. Great discoveries were possible as they were not before or since. Pasteur, with a devotion to experimental work that amounted to a passion, was a pupil at the Ecole Normale, in Paris. Bruited about he heard all the suggestive questions that were insoluble problems even to the great men around him. He was especially interested in the burning question of the day, the internal constitution of molecules and the arrangement of atoms in substances which, though they are composed of exactly the same constituents, exhibit very different physical and chemical qualities. The subject is, almost needless to say, a basic problem in chemistry and remains to our own day the most attractive of scientific mysteries.

 

Mitscherlich, one of the greatest chemists of the time, had just announced that certain salts–the tartrates and paratartrates of soda and ammonia–"had the same chemical composition, the same crystalline form, the same angles in the crystalline condition, the same specific weight, the same double refraction and, consequently, the same inclination of the optic axes. Notwithstanding all these points of similarity, if the tartrate is dissolved in water it causes the plane of polarized light to rotate while the paratartrate exerts no such action." Pasteur could not believe that all the chemical and physical qualities of two substances could be identical and their action to polarized light be so different. Mitscherlich was known, however, as an extremely careful observer. For several years Pasteur revolved all the possibilities in Mitscherlich's observations and, finally, came to the conclusion that there perhaps existed in the paratartrates, as prepared by Mitscherlich, two different groups of crystals, the members of one of which turned the plane of polarization to the right, the other to the left. These two effects neutralized each other and apparently the paratartrates have no influence on the polarized beam of light.

Pasteur found that the paratartrates were composed of crystals that were dissymmetrical–that is, whose image reflected in a mirror cannot be superposed on the crystal itself. This idea Pasteur makes clear by reference to the mirrored image of a hand. The image of the right hand as seen in a mirror is a left hand. It cannot be superposed on the hand of which it is the reflection any more than the left hand can be superposed on the right and have corresponding parts occupy corresponding places. Pasteur found that the paratartrates were not only dissymmetrical, but that they possessed two forms of dissymmetry. The mirrored image of some of the crystals could be superposed on certain of the other crystals just as the mirror image of the right hand can be superposed on the actual left hand. He concluded that if he separated these two groups from each other he would have two very different substances, and so the mystery propounded by Mitscherlich would be solved.

With Pasteur to conceive an idea was to think out its experimental demonstration. He manufactured the paratartrates according to the directions given by Mitscherlich, and then proceeded to sort the two varieties of crystals by hand. It was slow, patient work, and for hours Pasteur strove feverishly on alone in the laboratory. At length, the crystals were ready for solution and examination as to their effect upon polarized light. If Pasteur's idea as to the dissymmetry of crystals were confirmed, a great scientific advance was assured. Tremblingly the young enthusiast adjusted his polariscope. He tells the story himself of his first hesitant glance. But hesitation was changed to triumph. His prevision was correct. There were two forms of crystals with different effects on polarized light in Mitscherlich's supposed simple substance. Pasteur could not stay to put his instrument away. The air of the laboratory had become oppressive to him. Drunk with the wine of discovery, as a French biographer remarks, he rushed into the open air and almost staggered into the arms of a friend who was passing. "Ah," he said, "I have just made a great discovery. Come to the Luxembourg garden and I will tell you all about it." It was characteristic of the man all through life to have no doubt of the true significance of his work. He was sure of each step in the demonstration and his conclusions were beyond doubt.

Pasteur's discovery made a profound sensation. The French Academy of Sciences at once proceeded to its investigation. Among the members who were intensely interested, some bore names that now belong to universal science–Arago, Biot, Dumas, De Senarmont. Pasteur told long years afterward of Biot's emotion when the facts were visibly demonstrated to him. Greatly moved, the distinguished old man took the young man's arm and, trembling, said: "My dear child, I have loved science so well that this makes my heart beat." How deeply these men were bound up in their work! How richly they were rewarded for their devotion to science! There were giants in those days.

Pasteur's discovery was much more than a new fact in chemistry and physics. It was the foundation-stone that was to support the new science of stereochemistry–the study of the physiochemical arrangement of atoms within the molecule–that took its rise a few years later. Much more, it was a great landmark in biology. Pasteur pointed out that all mineral substances–that is, all the natural products not due to living energy–have a superposable image and are, therefore, not dissymmetrical. All the products of vegetable and animal life are dissymmetrical. All these latter substances turn the plane of polarization. This is the great fundamental distinction between organic and inorganic substances–the only one that has endured thus far in the advance of science. Dissymmetry probably represents some essential manifestation of vital force. Often there seem to be exceptions to this law; but careful analysis of the conditions of the problem shows that they are not real.

An apparent contradiction, for instance, to this law of demarcation between artificial products and the results of animal and vegetable life is presented by the existence in living creatures of substances like oxalic acid, formic acid, urea, uric acid, creatine, creatinin, and the like. None of these substances, however, has any effect on polarized light or shows any dissymmetry in the form of its crystals. These substances, it must be remembered, are the result of secondary action. Their formation is evidently governed by the laws which determine the composition of the artificial products of our laboratory, or of the mineral kingdom properly so called. In living beings they are the results of excretion rather than substances essential to life. The essential fundamental components of vegetables and animals are always found to possess the power of acting on polarized light. Such substances as cellulose, fecula, albumin, fibrin, and the like, never fail to have this power. This is sufficient to establish their internal dissymmetry, even when, through the absence of characteristic crystallization, they fail to manifest this dissymmetry outwardly.

It would scarcely be possible to indicate a more profound distinction between the respective products of living and of mineral nature than the existence of the dissymmetry among living beings and its absence in all merely dead matter. It is strange that not one of the thousands of artificial products of the laboratory, the number of which is each day growing greater and greater, should manifest either the power of turning the plane of polarization or non-superposable dissymmetry. Natural dissymmetrical substances–gum, sugar, tartaric and malic acids, quinine, strychnine, essence of turpentine, and the like–may be and are employed in forming new compounds which remain dissymmetrical though they are artificially prepared. It is evident, however, that all these new products only inherit the original dissymmetry of the substances from which they are derived. When chemical action becomes more profound–that is, becomes absolutely analytic or loosening of the original bonds imposed by nature–all dissymmetry disappears. It never afterward reappears in any of these successive ulterior products.

"What can be the causes of so great a difference?" We quote from Pasteur's life by his son-in-law: "Pasteur often expressed to me the conviction," says M. Radot, "that it must be attributed to the circumstance that the molecular forces which operate in the mineral kingdom and which are brought into play every day in our laboratory are forces of the symmetrical order; while the forces which are present and active at the moment when the grain sprouts, when the egg develops, and when under the influence of the sun the green matter of the leaves decomposes the carbonic acid of the air and utilizes in diverse ways the carbon of this acid, the hydrogen of the water and the oxygen of these two products are of the dissymmetrical order, probably depending on some of the grand dissymmetrical cosmic phenomena of our universe."

12Heureux celui qui porte en soi un dieu, un idéal de beauté et qui lui obéit; idéal de l'art, idéal de la science, idéal de la patrie, idéal des vertus de l'Evangile.
13Ce sont les sources vives des grandes pensées et des grandes actions. Toutes s'éclairent des reflets de l'infini.