Применение квантового туннельного эффекта код

Tekst
0
Recenzje
Przeczytaj fragment
Oznacz jako przeczytane
Czcionka:Mniejsze АаWiększe Aa

Глава седьмая
Катализаторы, применяемые в ЭУ

Рассмотрим применяемые в процессах данных энергетических устройств катализаторы, механизм катализа, каталитическую активность, метод синтеза катализатора и нанесения на поверхность.

Данные катализаторы – катализаторы на основе биополупроводников металлопорфиринов, хлорофилла. В данных соединениях мы заменили полупроводниковую часть на синтетический полупроводник арсенид галлия. Катализатор металлопорфиринарсенидгаллия более термически устойчивый, чем хлорофилл. Методы нанесения на поверхность, закрепления и синтеза соединены в одном методе магнитосшития материала. В данной методике применяем электромагниты-соленоиды, установленные на расчетном расстоянии от экрана магнитосшития материала. Предварительно тонкие порошки металлопорфирина и арсенида галлия наносим на экран. Катализаторы – адсорбенты, они адсорбируют молекулы рассматриваемых соединений, соответственно, образуют ослабляющую внутримолекулярные связи каталитическую связь.

Мы применяем следующие катализаторы-адсорбенты: металлы, палладий, амальгаму металла адсорбера водорода, амальгаму палладия, пленкообразующую жидкость, катализатор, амальгамы металлов-адсорберов (адсорберов водорода), катализаторы – адсорбенты кислорода, перфтораны.

Газообразные катализаторы, применяем вырожденную плазму, лептонный газ, метод синтеза катализатора, применяем квантовый эффект, процесс туннельной эмиссии электронов на поверхность туннельного полупроводникового материала, применяемые нами эмиттеры – карбиды металлов, арсенид галлия. Механизм каталитической активности лептонных газов следующий: эмитирующие на поверхность полупроводника лептоны взаимодействуют с молекулами катализируемого соединения (пример – взаимодействие с полярными молекулами воды), далее осуществляется каталитический процесс лептонного ослабления внутримолекулярной связи полярных молекул воды.

Рассмотрим следующий квантовый катализатор: находящиеся в материале СП (ВТСП) электроны образуют квантовую, бозоновскую жидкость, часть неспаренных электронов контактна, соответственно, наблюдается процесс короткоимпульсного преодоления магнитного барьера. Магнитный барьер обуславливает процесс вытеснения магнитного поля на поверхность СП. Чем короче импульс на СП электрического тока, тем выше вероятность преодоления магнитного барьера, взаимодействия неспаренных электронов с внешними соединениями, контактного образования бозоновской жидкости. Далее в процессе охлаждения СП, аккумулирующего электроны, электроны внешних, контактирующих с поверхностью СП соединений сорбируются и отбираются в бозоновскую жидкость.

Мы применяем следующий процесс: когерентное поле квантового источника ЭМ поля (квантового генератора) упорядочивает структуру магнитного материала, процесс намагничивания когерентным полем внешнего источника охлаждает материал до СП.

Рассмотрим подробнее механизм катализа металлопорфиринарсенидгаллием и основу данного катализа – механизм фотокаталитического лизиса воды на магниевом металлопорфирине биополупроводника хлорофилла.

Механизм фотокатализа хлорофиллом: биополупроводник хлорофилл в процессе воздействия на субстрат внешнего источника энергии, электромагнитного поля, солярного электромагнитного поля генерирует разность потенциалов на магниевом металлопорфирине, входящем в состав биомолекул. Металлопорфирин хлорофилла подключен к биополупроводниковой части биомолекулы, так что на данном элементе биокатализатор, есть возобновляемая реакция лизиса воды. В соответствии с данным механизмом мы заменили биополупроводниковую часть хлорофилла, синтезировали катализатор металлопорфиринарсенидгаллия, полупроводниковая часть катализатора металлопорфиринарсенидгаллия подключена к металлопорфирину, функционирует от внешнего источника тока либо внешнего источника электромагнитного поля, соответственно, на металлопорфирине есть возобновляемая реакция лизиса жидкости.

Глава восьмая
Катализ лизиса воды магнитным полем

Нам известно, что в состав низкомолекулярного неорганического соединения воды входит водород, способный образовывать связи нековалентного характера. Ядро данного соединения, протон, способно к определенному эффекту поля (ЯМР), то есть в переменном магнитном поле ядро реагирует с магнитным полем частоты, равным процессу, образующему магнитный момент протона, и далее происходит расщепление энергетических уровней ядра, так что характер нековалентных связей, водородных связей меняется и, соответственно, энергия данных связей ослабевает. Исходя из этого делаем вывод, что переменное магнитное поле способно быть катализатором лизиса воды. Применяем следующую техническую схему процесса.

Облучаем от внешнего источника СВЧ электромагнитного поля (механизм С. проводимости см. лит. 7). Антенны излучения – экран-параболоид, состоящий из тонкого листа СП материала. В СП материале образуются токи наведения, так как бозоновская жидкость, состоящая из квантовосвязанных электронов, вытесняет магнитное поле к поверхности СП. На ней образуется тонкий «слой» переменного магнитного поля (динамический магнитный слой), ЯМР-катализатор процесса лизиса.

Переменное магнитное поле взаимодействует с молекулами воды, находящимися в тонкой пленке на поверхности вращаемого экрана, далее происходит сочетание полей СП и протонов, изменяется характер водородных связей, они ослабевают, и, соответственно, энергии на лизис воды последующим разрядом электромагнитного поля от СВЧ антенны затрачивается меньше, то есть возможен процесс с положительным выходом энергии от энергоустройства.

Каталитические свойства СП, применение эффекта Джозефсона в СП, в устройствах генерации энергии, ЯМР—Джозефсон процесс

В установке ЭУ мы используем эффект Джозефсона (механизм эффекта см. лит. 13), и для данного процесса генерации энергии применяем следующую схему. Два СП переложены диэлектриком, частота тока в СП соответствует ЯМР протона, к СП приложена разность потенциалов, через диэлектрик производим прокачку водорода, далее есть захват электрона водорода туннелирующей частицей и низкотратная ионизация водорода в протон.

Применяя в схеме формулу, лед-диэлектрик +2 СП = низкотратное разложение воды при низких температурах. Схема эффективна в космическом пространстве, учитывая низкую температуру вакуума.

Глава девятая
Математический аппарат энергетического устройства

1. Формулы, описывающие процессы пленкообразования на вращаемом экране эмиттере-параболоиде, гидравлические процессы подачи жидкости, необходимые для управления толщиной пленки воды.

Для эффективного осуществления процесса управления толщиной пленки жидкости нам необходимо определить связь между толщиной пленки, количеством воды, выходящей через подающий жидкость на экран-эмиттер штуцер, и скоростью вращения экрана геометрической формы.

1) Формула расчета расхода жидкости через штуцер следующая:

G = q * g * π*d0² / 4*μ* √2g*h+W1² * R1²

либо

G = q * g * π * d0² / 4 * μ * W1 * √R1² – R2²,

где π = 3,14.

Далее,

G – массовый расход жидкости через отверстие,

q – плотность жидкости,

d0 – диаметр отверстия истечения,

h – напор,

W1 – угловая скорость вращения оболочки,

μ – коэффициент расхода,

R1 – внутренний радиус тонкостенной оболочки,

Rп – внутренний радиус свободной поверхности жидкости.

2) Уравнения «статики» жидкости в сосуде определенной формы

Согласно физической теории относительности поле, создаваемое вращением физического тела, и гравитационное поле, создаваемое статической массой, эквиваленты. Рассмотрим экран-эмиттер, сосуд с жидкостью относительно процесса образования первого поля, то есть предположим, что на жидкость действует потенциал поля, равномерно распределенный по поверхности сосуда, и исходя из этого жидкость принимает форму экрана и сосуд жидкость держит, то есть вода не выливается.

Затем найдем зависимость высоты слоя, равной в разных точках измерения данного параметра, так как потенциал, эквивалентный гравитационному полю, в данных точках один, то есть найдем зависимость высоты контактного слоя от объема поступившей жидкости.

2.1) Формула высоты контактного слоя жидкости,

решение исходя из уравнения

P = U² * qж / 2 * (R-r),

где

Р – давление жидкости на стенку вращаемого сферического сосуда либо сектора сферы,

U – угловая скорость вращения сосуда, экрана-эмиттера,

R – радиус пограничной поверхности,

r – радиус сферы, то есть внутренней поверхности сферического сосуда, либо максимальный внутренний радиус вращаемого сосуда – шарового (примем, что экран-эмиттер – полусфера) слоя

то искомое уравнение следующее:

2.2) Н = 2P / U² * qж

либо

H = 2P / 2 * π / 60 / n*qж,

где

Н – искомая высота контактного слоя жидкости,

qж – плотность жидкости,

n – число оборотов в минуту вала движителя устройства.

2.3) Уравнение «статического» объема жидкости, находящегося в сосуде сферической формы либо открытого сосуда-шарового слоя

Допустим, у сосуда-шарового слоя есть цилиндрическая отбортовка высотой выше, чем возможная высота слоя налитой в него жидкости, то есть жидкость не заполняет шаровой слой полностью, как в варианте распределения жидкости гравитационным полем стационарного объекта. Мы рассчитываем объем исходя из того, что жидкость принимает форму сосуда под воздействием поля, эквивалентного гравитационному, по формуле:

V = S * H – объем контактной жидкости,

где

S = 2π * Rп * Hп – площадь шарового пояса,

H – высота контактного слоя жидкости,

Rп – радиус сферы, вписывающийся в сегментную поверхность,

Нп – высота шарового пояса.

Примем вариант, что количество поступившей на поверхность экрана-эмиттера жидкости не более, чем необходимо для процесса пленкообразования, и нет протечки, поэтому жидкость поступает в сосуд полностью, то есть принимаем, что

 

G = V

G = 2π * Rп * Hп * H

либо

2.4) G = 2π * Rп * Hп * 2P / 2 * π / 60 / n * qж – уравнение управления системой.

Соответственно, тогда управляющие параметры, необходимые для управления толщиной жидкости:

n – число оборотов вала привода движителя,

h – напор жидкости.

Далее нам необходимо вычислить количество лучистой энергии, необходимой для проведения процесса разложения пленки жидкости заданной толщины на водород и кислород. Математическая модель взаимодействия антенны излучения электромагнитного поля с экраном-эмиттером электронной плазмы туннельным, выполняющего функцию антенны приема электромагнитного СВЧ поля, следующая:

2.5) П = Е * Hмаг – уравнение плотности потока СВЧ,

где

П – плотность потока энергии электромагнитного поля,

Е – напряженность электрического поля в вольтах на метр,

Нмаг – напряженность магнитного поля в амперах на метр.

2.6) Е = 120 * π * Нмаг – формула, связывающая измеренную напряженность электрического поля с напряженностью магнитного,

где

120 * π – волновое сопротивление «свободного» пространства, среды, размерность коэффициента,

qc = 120 * π, величина, приблизительно равная 377 Ом, есть размерность сопротивления, отсюда

П = 377* Нмаг,

П = Е²/377 – плотность потока энергии, количество энергии, проходящее за 1 секунду через площадь в один квадратный метр, КВТ/см², Вт/м², далее,

2.7) П1 / П2 = r1² / r2² – формула зависимости плотности потока энергии электромагнитного поля, измеренной в данной точке экрана-эмиттера электронной плазмы туннельного, выполняющего функцию антенны приема электромагнитного поля, от расстояния до антенны излучения СВЧ поля. Необходима для экспериментального определения количества энергии, необходимого для термолиза тонкой пленки жидкости заданной толщины, управляемой с применением модулирование n-числом оборотов вала привода движителя, соединенного с экраном-эмиттером параболоидом и h-напором жидкости, где, r1 и r2 – расстояние от рассматриваемых точек до антенны излучения электромагнитного поля.

Данный математический аппарат необходим в процессе определения температуры термолиза тонкой водяной пленки в условиях взаимодействия с электронной плазмой и определения энергетического расхода для достижения данной температуры. Так, данный показатель является определяющим возможность применения устойчивого низкомолекулярного эндотермического в условиях реакции с кислородом воздуха химического соединения воды, топливом ЭУ.

Глава десятая
Выбор материалов элементов конструкции энергетического устройства

Прежде всего выбираем исходя из критериев соответствия материала техническим параметрам работы энергетического устройства и безопасности работы оператора материал (конструкционный материал) камеры плазмокаталитического термолиза воды в тонкой пленке на вращаемом экране-эмиттере, то есть элемента конструкции энергетического устройства, предназначенного вырабатывать водород.

Камеры выработки водорода расположены в верхней и нижней частях плоской башни (диска, эллипсоида).

Экран-эмиттер электронной плазмы, катализатора лизиса воды расположен в верхней полусферической части диска, нижняя часть камеры выработки топлива, полуконическая, данная часть энергетического устройства является антенной приема энергии ЭМ поля.

Конструкция экрана-эмиттера, катализирующего процесс лизиса воды плазмы следующая: форма основания – параболоид вращения, чаша – материал массива диэлектрик. Предназначение массива чаши, состоящей из материала с данной физико-химической структурой, – отражатель СВЧ ЭМ поля в туннелирующее электронную плазму ПК покрытие.

Критерии соответствия для данного материала следующие: материал выдерживает соответствующие механические нагрузки, так как экран вращается, материал – диэлектрик, отражает радиоизлучение в частотном диапазоне лизиса воды, выдерживает термическую нагрузку в температурном интервале лизиса тонкой водяной пленки.

Данный материал (конструкционный материал) – стеклокерамика, то есть ситалл, кордиерит. Он отражает электромагнитное поле радиодиапазона частот волн в частотном интервале лизиса воды и выдерживает соответствующие механические нагрузки и температурные нагрузки термолизиса воды в пленке СВЧ ЭМ полем.

Ситалловая (кордиеритовая) подложка эмиссионного покрытия экрана, то есть туннелирующего плазму ПК арсенида галлия (карбида металла), такая, что на поверхности ее есть выемка, в канавке заподлицо расположен запитывающий туннелирующий слой-проводник, форма расположения на экране – спираль.

Далее выбираем материал стержня диэлектрической антенны излучения (антенны бегущей волны). Данный материал, работающий в условиях водородной среды, устойчивый к водородной коррозии и выдерживающий тепловые нагрузки термолиза воды, – кордиерит, то есть диэлектрический стержень антенны излучения СВЧ ЭМ поля кордиеритовый.

Далее рассмотрим конструкцию движителя экрана. Движитель экрана-эмиттера холодной электронной плазмы работает исходя из следующей технической схемы.

С внутренней стороны краевой части экрана-эмиттера электронной плазмы расположен токопроводящий СП, форма (сегмент сферы) – шаровой пояс. На поверхность экрана-эмиттера туннелирует под действием внешнего источника СВЧ ЭМ поля электронный газ, плазма, то есть поверхность эмиттера (и краевая поверхность соответственно) покрыта тонкой плазменной пленкой. Так как данный газ состоит из электронов, лептонов с полуцелым спином, соответственно, газ взаимодействует с магнитным полем, плазма выталкивается данным полем.

СП шаровой пояс – СП электромагнит, и, соответственно, СВЧ излучение проникает в зазор между электромагнитом и поверхностью эмиттера так, что на краевой поверхности есть выход плазмы. Электронный газ взаимодействует с СП электромагнитом, плазма выталкивается магнитным полем электромагнита (ЭСПа), давление газа эмитировавшей плазмы вращает экран на СП подвеске, соответственно, потери энергии на преодоление силы трения минимальны.

Материал (конструкционный материал) движителя, вращающего экран-эмиттер холодной электронной плазмы катализатора термолиза воды в тонкой пленке, работает в условиях температур плазмокаталитического лизиса воды в тонкой пленке СВЧ полем соответственно, так как данный материал – ВТСП, материал СП – металлокерамика. Держатели СП выполнены из диэлектрического материала, выдерживающего температурную нагрузку в интервале температур лизиса и отражающего ЭМ поле, данный материал – кордиерит. Нижняя часть СП защищена кордиеритом от воздействия тепловой нагрузки СВЧ ЭМ поля, во внутренней полости держателей (кордиеритовых трубок) находится СП провод электрического тока.

Выбор конструкционного материала корпуса ЭУ и стенок отсеков. Конструкционный материал корпуса ЭУ (плоской башни), то есть обечайки корпуса, эллиптических днищ, полусферических камер плазмокаталитической выработки водорода, расположенных сверху и снизу ЭУ, торцевого подопорного борта в стационарном варианте ЭУ, стенок внутренних отсеков ЭУ, то есть полуконических нижних частей камер выработки водорода, расположенных внутри корпуса ЭУ, стенок центральной камеры, расположения платформы генераторов СВЧ ЭМ поля, элементов (частей) камеры термоэмиссионного преобразователя тепловой энергии водорода в электрическую энергию, крепежных деталей платформы расположения генераторов СВЧ ЭМ поля, исходя из критериев соответствия характеристик материала техническим параметрам и условиям работы ЭУ, механическим, температурным и крионагрузкам.

Для корпуса ЭУ – титановый криосплав. Материал полусферических камер плазмокаталитической выработки водорода, устойчивый к воздействию крио и температур в интервале термолиза воды в тонкой пленке на вращаемом экране туннельном эмиттере электронной плазмы.

Выбор конструкционного материала тепловой и СВЧ изоляции камер СВЧ плазмокаталитической выработки водорода, термоэмиссионного преобразователя тепловой энергии горения водорода в электрическую энергию.

Теплопроводность титановых сплавов, конструкционных материалов корпуса ЭУ, полусферических камер СВЧ плазмокаталитической выработки водорода и нижних полуконических частей данных камер соответствует параметрам работы ЭУ, соответственно, прямое соприкосновение газовой смеси водорода с кислородом со стенками корпуса и внутренними частями ЭУ приведет к разогреву поверхностей. Исходя из этого, мы применяем соответствующий критериям безопасности термо- и СВЧ-изолирующий, защищающий стенки ЭУ от разогрева газовой смесью и СВЧ полем материал.

Глава одиннадцатая
Техническое обоснование применения квантовых генераторов ЭМ СВЧ поля в процессе туннельной электронной плазмы, катализатора процесса лизиса воды в тонкой пленке

СВЧ ЭМ излучение квантового генератора (мазера) в том числе отличается от поля, образуемого устройствами не квантовой страты.

Так как ЭМ поле квантового генератора когерентно, то взаимодействие излучения генератора с применяемым в ЭУ плазмокаталитического лизиса воды в тонкой пленке с туннельным ПК покрытием вращаемого экрана эмиттера электронной плазмы отличается от взаимодействия c СВЧ ЭМ полем, образуемым генераторами, не квантовыми в страте. Мы применяем когерентность СВЧ ЭМ поля генератора, так как выход плазмы, процесс туннельной эмиссии электронного газа на поверхность ПК выше во взаимодействии ПК туннельного покрытия эмиттера данным полем.

Взаимодействие тонкой структуры когерентного СВЧ ЭМ квантового генератора (лазера) с электронными уровнями ПК характеризуется более эффективным поглощением энергии поля, так как плотность соответствий максимумов и минимумов организованной тонкой структуры когерентного поля по сравнению с шумообразным с соответствующими частями тонкой структуры энергетических уровней ПК выше, и исходя из этого резонанс тонких волновых структур, поля с энергетическим уровнем, в объеме туннельного ПК покрытия интенсивнее, соответственно, больше выход электронной плазмы. То есть, применяя мазер, при меньшей затрате энергии мы имеем заданное количество каталитической электронной плазмы и больше выход плазмы с единицы поверхности туннельного ПК покрытия эмиттера.

Выбор квантового генератора, соответствующего техническим параметрам ЭУ. Применяем мазер на циклотронном резонансе (МЦР), гиротрон соответствует заданным параметрам ЭУ. Далее рассмотрим движитель экрана эмиттера электронной плазмы ЭУ.

Движитель, вращающий экран-эмиттер электронной плазмы ЭУ, предназначен для создания, переменяя центробежную силу на туннельном ПК покрытии экрана-эмиттера, тонкого слоя термолизуемой СВЧ ЭМ полем жидкости. Конструкция движителя экрана-эмиттера электронной плазмы ЭУ следующая: на расстоянии от внутренней краевой поверхности чаши (параболоида вращения) экрана-эмиттера электронной плазмы ЭУ расположен вращающийся экран СП подковообразной формы. То есть между поверхностью экрана-эмиттера и СП есть зазор, достаточный для проникновения к поверхности ПК туннельного покрытия экрана-эмиттера ЭМ СВЧ поля от квантового генератора, взаимодействия данного излучения с ПК туннельным покрытием и эмиссии на поверхность покрытия электронной плазмы. Внешняя поверхность ПК покрыта ситаллом, диэлектрическим материалом – кордиеритом, покрытие предназначено для защиты поверхности ПК от разогрева и генерации в массиве ПК тока наведения от квантового генератора. СП расположен на кордиеритовых стержнях-держателях, два концевых стержня полые, в концевых кордиеритовых стержнях-держателях расположен СП провод, подсоединенный к электрической цепи ЭУ.

Диэлектрическая антенна излучения СВЧ ЭМ поля (бегущей волны) выполнена в форме «закрученного» стержня (пример – закрученный валик поверхности ситаллового диэлектрического стержня), так что вводимое от волновода на стержень ЭМ поле на выходе от стержня испытывает процессию, покадрово относительно поверхности, то есть вращается с большой скоростью вокруг оси симметрии стержня антенны. Соответственно, под зазором СП на поверхности экрана-эмиттера образуются два максимума электронной плазмы, движущиеся над контуром СП, поле СП взаимодействует с максимумами плазмы, так что экран-эмиттер, выталкиваемый полем, вращается вокруг оси. Скорость вращения движителя управляется нами, применяем увеличение либо уменьшение подачи токовой мощности на СП.

To koniec darmowego fragmentu. Czy chcesz czytać dalej?