Устройства радиочастотной идентификации в библиотечных технологиях

Tekst
0
Recenzje
Przeczytaj fragment
Oznacz jako przeczytane
Czcionka:Mniejsze АаWiększe Aa

§ 1.4. Принцип работы и устройство меток РЧИ

Наибольшее распространение в библиотечных системах автоматизации в настоящее время получили пассивные метки РЧИ, работающие в ВЧ диапазоне (13,56 МГц). Конструктивно такие метки могут быть выполнены в виде пластиковых карт или бумажных самоклеющихся этикеток.

Конструкция пассивной метки РЧИ, выполненной в виде этикетки с клеевым слоем показана на рисунке 6. Метка состоит из бумажного или прозрачного полимерного (ПЭТ – полиэтилентерефталат) лицевого защитного покрытия (1). Под ним располагается полимерный инлей (2) на полимерной (ПЭТ) основе, на котором закреплена интегральная схема (3) и антенна (4). На инлей нанесён клеевой слой (5) из специального акрилового клея. Метки поставляются наклеенными на легко отделяемую подложку (6) изготовленную из силиконизированной бумаги.

Рисунок 6 Конструкция метки РЧИ


Главными конструктивными элементами, определяющими работу метки РЧИ, являются интегральная схема и антенна. Можно сказать, что метка состоит из интегральной схемы, подключенной к антенне. В состав интегральной схемы входит блок управления, энергонезависимая память, радиочастотный блок и модулятор, как показано на рисунке 7.

Антенна метки представляет собой несколько витков электрического проводника, выполненного из меди или алюминия, подключенного к интегральной схеме. Антенна служит для преобразования энергии рабочего поля считывателя в электрический ток, который обеспечивает питание интегральной схемы, и получение данных от считывателя РЧИ.

Радиочастотный блок служит для обнаружения изменений характеристик рабочего поля считывателя РЧИ и преобразования их в двоичные данные, поступающие на блок управления.

Модулятор метки служит для кратковременного замыкания антенны метки синхронно с передаваемыми меткой данными. Такие манипуляции с антенной создают переменную нагрузку на рабочее поле считывателя РЧИ и воспринимаются им как данные, передаваемые меткой.


Рисунок 7 Устройство метки РЧИ


Энергонезависимая память служит для хранения данных, используемых при работе метки в системе РЧИ. Большая часть памяти метки доступна для изменения хранимых данных по командам, получаемым меткой от считывателя РЧИ.

Блок управления служит для интерпретации данных, передаваемых считывателем РЧИ, в команды, их исполнения и формирования данных для передачи считывателю как результата выполнения команд. В процессе обработки команд считывателя блок управления контролирует работу радиочастотного блока, модулятора и энергонезависимой памяти.

§ 1.5. Принцип работы и устройство считывателей РЧИ

Считыватель РЧИ представляет собой микропроцессорное устройство, имеющее в своем составе радиочастотный блок и антенну, как показано на рисунке 8. Считыватель подключен к компьютеру через стандартный канал связи, обычно это компьютерный USB порт.

Антенна считывателя конструктивно аналогична антенне метки, но может иметь больший размер. Конкретный размер антенны определяются технологическим предназначением считывателя и конструкцией его корпуса. Антенна служит для создания рабочего поля (для считывателей ВЧ диапазона это магнитное поле) энергия которого используется метками для работы.

Радиочастотный блок считывателя служит для формирования высокочастотных электрических сигналов, преобразующихся в энергию рабочего поля. Кроме того, радиочастотный блок формирует изменения рабочего поля считывателя синхронно с передаваемыми для меток данными. В режиме приема он преобразует изменения рабочего поля, производимые метками, в данные, формируемые метками в процессе работы системы РЧИ.

Микропроцессорный блок служит для преобразования команд, получаемых от управляющего компьютера в последовательности команд, передаваемых меткам РЧИ, находящимся в поле считывателя. В результате выполнения команд управляющего компьютера осуществляется обмен данными между системой автоматизации РЧИ и метками с целью идентификации маркированных метками объектов.


Рисунок 8 Устройство считывателя РЧИ


Интерфейсный модуль связи с компьютером служит для получения команд от управляющего компьютера и обмена данными в процессе работы системы РЧИ. Считыватели различных типов могут иметь различные интерфейсные модули. Наиболее распространенным интерфейсом является USB-порт компьютера, к которому считыватель подключается по кабелю. Некоторые типы считывателей могут иметь сетевой интерфейс и осуществлять обмен данными с компьютером по сетевым протоколам TCP/IP. Кроме того, связь считывателя с компьютером может осуществляться через беспроводные интерфейсы Wi-Fi или Bluetooth.

Более подробную информацию об устройстве и принципах работы систем радиочастотной идентификации можно найти в работе Богатырева Е. А. «RFID-системы: основы построения, функционирования и применения» [3].

Заключение

Технология РЧИ появилась как результат развития радиотехники и радиоэлектроники. Теоретические основы технологии были заложены в 1920–40-х гг. Первые устройства РЧИ появились и начали применяться на практике в конце ХХ в., но их широкое распространение началось в конце 1990-х – начале 2000-х гг. в связи с появлением микроэлектронных устройств. Принцип работы РЧИ систем основан на автоматической идентификации объектов, маркированных РЧИ метками, при их попадании в рабочую зону РЧИ считывателей. Существуют различные виды РЧИ оборудования. В зависимости от вида устройств РЧИ, они обладают существенно разными характеристиками, определяющими конкретные области их применения. Наибольшее распространение в библиотечных системах автоматизации получило оборудование РЧИ, работающее в ВЧ диапазоне радиоволн, использующее пассивные РЧИ метки, не имеющие источника питания, использующие для работы энергию поля, создаваемого РЧИ считывателем в рабочей зоне и выполненные в виде этикеток с клеевым слоем.

Контрольные вопросы к главе 1

1. Развитие каких областей знания привело к появлению технологии РЧИ?

2. Изобретение каких устройств стало предпосылками к появлению РЧИ?

3. Какие основные виды устройств РЧИ существуют в настоящее время?

4. Какие виды устройств РЧИ используются сегодня в библиотеках?

5. Какие основные составляющие элементы системы РЧИ?

6. На каком принципе основана передача данных от считывателя к метке и от метки к считывателю?

7. Из каких основных функциональных элементов состоит метка РЧИ?

8. Из каких основных функциональных элементов состоит считыватель РЧИ?

9. Каково основное предназначение системы РЧИ?

10. Каковы основные преимущества технологии РЧИ в сравнении с технологией штрихового кодирования?

Глава 2. НОРМАТИВНАЯ БАЗА ТЕХНОЛОГИИ РАДИОЧАСТОТНОЙ ИДЕНТИФИКАЦИИ

Введение

Роль стандартов в развитии любого вида деятельности заключается в закреплении накопленного опыта в виде общепринятых правил, выполнение которых способствует его дальнейшему развитию. В полной мере это относится и к технологии радиочастотной идентификации.

В этом разделе представлена нормативная база применения технологии РЧИ в библиотеках. Показаны исторические предпосылки появления первых стандартов и современное состояние стандартизации в области РЧИ. Показаны и даны характеристики основных систем стандартов, определяющих работу устройств РЧИ. Приведены основные положения стандартов, регламентирующих применение РЧИ оборудования в библиотеках. Так же, изложены основные требования со стороны государственных контролирующих органов к применению устройств РЧИ на территории Российской Федерации на использование частотных диапазонов и условий излучения электромагнитных волн, а также на соответствие установленным санитарным нормам.

§ 2.1. История появления стандартов РЧИ

Основы технологии радиочастотной идентификации закладывались в 30–40-е гг. ХХ в., но только в 90-е гг. началось её бурное развитие, что было обусловлено успехами в развитии цифровой техники и микроэлектроники. Отсутствие общепринятых правил обмена данными между устройствами РЧИ и прикладными технологическими системами на начальном этапе стало причиной появления на рынке множества различных видов оборудования – считывателей и меток РЧИ. Использование оборудования РЧИ с различными характеристиками приводило к несовместимости и низкой повторяемости прикладных технических решений с использованием оборудования от разных производителей. Все это сдерживало развитие технологии РЧИ и ограничивало масштабность проектов её внедрения.

Принято считать, что начало развития технологии РЧИ в современном её понимании было положено учеными из Массачусетского технологического института (США), которые в конце 90-х гг. занялись разработкой стандартов, необходимых для широкого применения РЧИ на практике. Применение стандартных подходов позволяло снизить стоимость микросхем для меток за счет их массового производства. Это делало технологию РЧИ доступной во многих областях. Финансовую поддержку этого проекта оказывала организация «Uniform Code Council, Inc.» (Некоммерческая организация США по стандартам идентификации продукции и средств электронных коммуникаций. В 2005 г. вошла в GS1). В 1999 г. в рамках проекта был открыт специализированный научный центр «Auto-ID Center» в Кембриджском исследовательском центре Массачусетского технологического института, затем появились аналогичные центры при университетах Англии, Китая, Кореи, Японии, Швейцарии, Австралии. В 2003 г. «Auto-ID Center» был преобразован в научное объединение «Auto-ID Labs», которое, совместно с созданной организацией «EPC Global», продолжило развитие и стандартизацию технологии РЧИ в системе стандартов EPC (Electronic Product Code). В настоящее время развитием стандартов EPCGlobal занимается международная некоммерческая организация GS1, образованная в 2005 г. на базе международной ассоциации EAN, в которую вошла «EPC Global».

 

В настоящее время стандарты EPC широко используются для производства СВЧ оборудования РЧИ, широко применяемого в области складской и транспортной логистики.

Еще одно направление в области стандартизации средств РЧИ связано с такими организациями как Международная организация по стандартизации (ИСО) и Международная электротехническая комиссия (МЭК). В 1987 г. ими был образован Совместный технический комитет ИСО/МЭК ОТК1 «Информационные Технологии», в рамках которого в 1996 г. был создан Подкомитет ПК31 «Автоматическая идентификация и технология сбора данных», в котором были разработаны первые стандарты, упорядочивающие технические характеристики различных устройств РЧИ и методы их применения.

Первый международный стандарт, описывающий параметры радиоканала и протокол обмена данными между считывателем и пассивной меткой РЧИ был принят Совместным техническим комитетом СТК1 ИСО/МЭК в 2000 г. Стандарт ИСО/МЭК 15693 [4] определяет условия использования и технические характеристики для идентификационных карт РЧИ удаленного действия, работающих на частоте 13,56 МГц. Карты этого типа имеют сравнительно большую дальность считывания, до 1 м. Действие стандарта также распространяется на радиочастотные метки на бумажной основе для маркировки учетных единиц и их автоматизированной идентификации.

Следующим международным стандартом, разработанным СТК1 стал ИСО/МЭК 14443 [5], который определил технические характеристики для карт РЧИ ближнего радиуса действия, с малой дальностью чтения и большими скоростями обмена данными. Стандарт определяет работу семейства карт, разработанных компанией «NXP Semiconductors» под торговой маркой «Mifare». В семейство входят карты ряда типов, отличительной особенностью которых является наличие сравнительно большого объема встроенной памяти, защищенной средствами криптозащиты. Карты этих типов находят применение преимущественно в системах бесконтактной оплаты.

В дальнейшем основные положения стандартов ИСО/МЭК 15693 и ИСО/МЭК 14443 вошли в стандарт ИСО/МЭК 18000, который появился позднее. В настоящее время эти стандарты являются действующими и являются базовыми для стандартов прикладного уровня в области РЧИ.

§ 2.2. Общая нормативная база РЧИ

2.2.1. Система стандартов ИСО/МЭК 18000

Стандарты ИСО/МЭК 18000, под общим названием «Информационные технологии. Радиочастотная идентификация для управления предметами», сегодня являются базовыми для всех видов устройств РЧИ. Первая версия стандартов была принята в 2004 г. Стандарты получили широкую, хотя и не всеобщую поддержку со стороны производителей оборудования РЧИ. Сегодня эти стандарты представлены 6 частями [6], определяющими работу РЧИ устройств в различных установленных частотных диапазонах. В настоящее время стандарт состоит из 6 частей с номерами от 1 до 7, с пропуском 5 части.

Первая часть стандарта является общей для всех остальных и определяет положения, применяемые во всех стандартах группы.

Вторая часть стандарта определяет работу систем РЧИ с пассивными метками, работающих в НЧ диапазоне 135 кГц. Метки этого диапазона имеют очень малое расстояние считывания, обычно не превышающее один сантиметр, и преимущественно используются в виде карт в системах контроля и управления доступом (СКУД) для оборудования автоматизированных шлагбаумов, турникетов и т. д. В настоящее время карты этого диапазона выходят из употребления и замещаются картами, определяемыми третьей частью стандарта.

Третья часть стандарта определяет работу систем РЧИ с пассивными метками, работающих в ВЧ диапазоне 13,56 МГц. Дальность считывания меток этого диапазона лежит в пределах 1 м, они предназначены для работы в системах логистики, на транспорте и в системах бесконтактной оплаты. В стандарте определены три типа систем независимых и несовместимых друг с другом:

– Тип Mode 1 соответствуют меткам стандартов ИСО/МЭК 15693 и ИСО/МЭК 14443. Метки этого типа сегодня являются самыми востребованными в ВЧ диапазоне и широко используются в системах РЧИ, в том числе и в библиотечных системах автоматизации.

– Тип Mode 2 на сегодняшний день не нашел применения у производителей оборудования РЧИ.

– Тип Mode 3 соответствует стандарту организации GS1 для меток типа «EPC Class 1 HF». В настоящее время разработка систем РЧИ на базе меток типа Mode 3 является перспективным направлением, но пока слабо поддержанным разработчиками оборудования и систем РЧИ.

Четвертая часть стандарта определяет работу систем РЧИ с пассивными метками, работающих в МВЧ диапазоне 2,45 ГГц. Дальность считывания меток этого диапазона может достигать 150 м. Метки этого типа обычно применяются в системах локальной навигации и локального позиционирования.

Шестая часть стандарта определяет работу систем РЧИ с пассивными метками, работающих в СВЧ диапазоне 860–960 МГц. Дальность считывания меток этого диапазона находится в пределах десяти метров, они предназначены для работы в системах логистики, на транспорте. В шестой части стандарта выделено пять разделов, объединенных общим названием: «Параметры радиоинтерфейса для диапазона частот 860–960 МГц». Первый раздел определяет общие требования к СВЧ системам РЧИ. Последующие четыре раздела определяют четыре независимых типа систем: A, B, C и D. Метки типа C соответствуют стандарту организации «GS1» для меток «EPC Class 1 Generation 2» (EPC Cl1g2). В настоящее время это самый распространенный в мире тип меток, применяемых в системах автоматизации на базе РЧИ в области складской и транспортной логистики.

Седьмая часть стандарта определяет работу систем РЧИ с активными метками, работающих в СВЧ диапазоне 433 МГц. Дальность считывания меток этого диапазона достигает 100 м, они применяются в системах логистики для маркировки контейнеров и возвратной тары.

2.2.2. Система стандартов ИСО/МЭК 14443

Стандарты ИСО/МЭК 14443 под общим названием «Карты идентификационные. Карты на интегральных схемах бесконтактные. Карты близкого действия» состоит из 4 частей, определяющих основные характеристики карт этого типа.

Наиболее известной реализацией карт типа ИСО/МЭК 14443 являются бесконтактные смарт-карты семейства Mifare, производимые компанией «NXP Semiconductors«. Семейство Mifare включает в себя несколько типов карт, отличающихся размером встроенной памяти и алгоритмами криптозащиты данных. Базовым типом является тип карт «Mifare Classic», имеющий два подтипа 1K и 4K, отличающихся размером памяти: 1 Кбайт и 4 Кбайт соответственно.

Существуют некоторые другие типы карт, например, семейства Smart, применяемые в банковских бесконтактных платежных системах, которые имеют режим эмуляции «Mifare Classic».

Каждая карта семейства Mifare имеет уникальный серийный номер UID. С 1998 г. компания NXP выпускала карты с идентификатором UID (Unique identificator) длиной 4 байта. В 2010 г. компания объявила о том, что диапазон 4-х байтных номеров подходит к концу и начала производство карт «Mifare Classic EV1» с идентификатором UID длиной 7 байт, обеспечивающим абсолютную уникальность.

Интегральные схемы карт этого типа имеют сравнительно сложную организацию и содержат большое количество полупроводниковых элементов (транзисторов), что является причиной сравнительно высокого потребления электроэнергии и низкой чувствительности, а следовательно – малой дальности действия в РЧИ системах. Дальность считывания таких карт обычно не превышает 15 см, поэтому на базе таких интегральных схем производят только карты идентификации.

Карты этого типа имеют ограниченное применение в библиотеках в качестве читательских билетов, обычно только в случаях, когда читатели уже имеют корпоративные карты (электронные пропуска, удостоверения, кампусные карты и т. д.) такого типа. В случае использования таких карт для автоматизированной идентификации читателей используется идентификатор UID карты. Использование карт Mifare в библиотечных системах РЧИ на сегодняшний день не поддерживается библиотечными стандартами прикладного уровня.

2.2.3. Система стандартов ИСО/МЭК 15693

Система стандартов ИСО/МЭК 15693 под общим названием «Карты идентификационные. Карты на интегральных схемах бесконтактные». Интегральные схемы для карт этого типа имеют встроенную энергонезависимую память, имеющую пользовательскую область, доступную для записи и чтения специальными командами считывателя РЧИ. Записанные в память данные могут быть защищены от перезаписи специальной командой блокировки. Кроме того, карты этого типа имеют следующие основные параметры:

– Уникальный серийный номер-идентификатор UID (Unique IDentifie), доступный для чтения специальной командой считывателя РЧИ. Уникальность идентификатора обеспечивается соглашением между всеми производителями интегральных схем этого типа.

– Байт семейства приложений – AFI (Application Family Identifier), доступный для записи специальными командами. Установка определенных значений этого параметра в карте и использование его в командах считывателя РЧИ позволяет считывать только «свои» карты. Карты с другим значением AFI будут «не видимы» для считывателя. Значение AFI может быть защищено от перезаписи.

Интегральные схемы для карт этого типа имеют сравнительно простую организацию, содержат не большое количество полупроводниковых элементов (транзисторов), что обеспечивает низкое потребление электроэнергии и повышенную чувствительность, и дальность действия в РЧИ системах. Дальность считывания таких карт может достигать 1 м, поэтому на базе таких интегральных схем также производят радиочастотные метки для маркировки различных предметов учета для их автоматизированной идентификации. Карты и метки этого типа поддерживают механизм антиколлизии, позволяющий считывателю РЧИ работать с каждой меткой в отдельности при нахождении в его рабочей зоне множества меток.

Крупнейшим производителем интегральных схем для карт и меток этого типа сегодня является компания «NXP Semiconductors», которая выпускает их в соответствии со своим корпоративным стандартом ICode SliX2 (ранее – ICode Sli, ICode SliX). Корпоративный стандарт уточняет положения, определенные в базовом стандарте ИСО/МЭК 15693. Интегральные схемы для карт и меток типа ICode SliX2 имеют 2528 бит пользовательской памяти с гарантией на 100 000 циклов перезаписи и 50 лет сохранения записанных данных. К особенностям карт и меток этого типа следует отнести наличие противокражного признака – бита EAS (Electronic Article Surveillance). Этот параметр не определен стандартом ИСО/МЭК 15693 и поддерживается только метками семейства ICode Sli. Тем не менее, большинство считывателей РЧИ поддерживают работу с этим параметром и используют его для реализации противокражной функции в системах РЧИ. Бит EAS может быть однократно защищен от перезаписи командой блокировки. В случае если работа с меткой ICode SliX2 предполагает многократное изменение значений EAS и AFI они могут быть защищены от несанкционированной перезаписи 32 битным паролем. Кроме того, паролем может быть защищено от перезаписи содержимое пользовательской памяти.

В настоящее время все три части стандарта ИСО/МЭК 15693 введены в систему российской стандартизации как идентичные международным и имеют наименование ГОСТ Р ИСО/МЭК 15693.

Сегодня радиочастотные метки и карты именно этого типа получили наиболее широкое применения в библиотеках.

To koniec darmowego fragmentu. Czy chcesz czytać dalej?