Za darmo

Astronomical Curiosities: Facts and Fallacies

Tekst
iOSAndroidWindows Phone
Gdzie wysłać link do aplikacji?
Nie zamykaj tego okna, dopóki nie wprowadzisz kodu na urządzeniu mobilnym
Ponów próbęLink został wysłany

Na prośbę właściciela praw autorskich ta książka nie jest dostępna do pobrania jako plik.

Można ją jednak przeczytać w naszych aplikacjach mobilnych (nawet bez połączenia z internetem) oraz online w witrynie LitRes.

Oznacz jako przeczytane
Czcionka:Mniejsze АаWiększe Aa

CHAPTER VII
The Minor Planets

Up to 1908 the number of minor planets (or asteroids) certainly known amounted to over 650.

From an examination of the distribution of the first 512 of these small bodies, Dr. P. Stroobant finds that a decided maximum in number occurs between the limits of distance of 2·55 and 2·85 (earth’s mean distance from sun = 1), “199 of the asteroids considered revolving in this annulus.” He finds that nearly all the asteroidal matter is concentrated near to the middle of the ring in the neighbourhood of the mean distance of 2·7, and the smallest asteroids are relatively less numerous in the richest zones.114

There are some “striking similarities” in the orbits of some of the asteroids. Thus, in the small planets Sophia (No. 251 in order of discovery) and Magdalena (No. 318) we have the mean distance of Sophia 3·10, and that of Magdalena 3·19 (earth’s mean distance = 1). The eccentricities of the orbits are 0·09 and 0·07; and the inclinations of the orbits to the plane of the ecliptic 10° 29′ and 10° 33′ respectively.115 This similarity may be – and probably is – merely accidental, but it is none the less curious and interesting.

Some very interesting discoveries have recently been made among the minor planets. The orbit of Eros intersects the orbit of Mars; and the following have nearly the same mean distance from the sun as Jupiter: —

Achilles (1906 TG), No. 588,

Patrocles (1906 XY), No. 617,

Hector (1907 XM), No. 624,

and another (No. 659) has been recently found. Each of these small planets “moves approximately in a vertex of an equilateral triangle that it forms with Jupiter and the sun.”116 The minor planet known provisionally as HN is remarkable for the large eccentricity of its orbit (0·38), and its small perihelion distance (1·6). When discovered it had a very high South Declination (61½°), showing that the inclination of the plane of its orbit to the plane of the ecliptic is considerable.117

Dr. Bauschinger has made a study of the minor planets discovered up to the end of 1900. He finds that the ascending nodes of the orbits show a marked tendency to cluster near the ascending node of Jupiter’s orbit, a fact which agrees well with Prof. Newcomb’s theoretical results. There seems to be a slight tendency for large inclinations and great eccentricities to go together; but there appears to be no connection between the eccentricity and the mean distance from the sun. The longitudes of the perihelia of these small planets “show a well-marked maximum near the longitude of Jupiter’s perihelion, and equally well-marked minimum near the longitude of his aphelion,” which is again in good agreement with Newcomb’s calculations.118 Dr. Bauschinger’s diameter for Eros is 20 miles. He finds that the whole group, including those remaining to be discovered, would probably form a sphere of about 830 miles in diameter.

The total mass of the minor planets has been frequently estimated, but generally much too high. Mr. B. M. Roszel of the John Hopkins University (U.S.A.) has made a calculation of the probable mass from the known diameter of Vesta (319 miles, Pickering), and finds the volume of the first 216 asteroids discovered. From this calculation it appears that it would take 310 asteroids of the 6th magnitude, or 1200 of the 7th to equal the moon in volume. Mr. Roszel concludes that the probable mass of the whole asteroidal belt is between 1⁄50th and 1⁄100th of that of the moon.119 Subsequently Mr. Roszel extended his study to the mass of 311 asteroids,120 and found a combined mass of about 1⁄40th of the moon’s mass.

Dr. Palisa finds that the recently discovered minor planet (1905 QY) varies in light to a considerable extent.121 This planet was discovered by Dr. Max Wolf on August 23, 1905; but it was subsequently found that it is identical with one previously known, (167) Urda.122 The light variation is said to be from the 11th to the 13th magnitude.123 Variation in some of the other minor planets has also been suspected. Prof. Wendell found a variation of about half a magnitude in the planet Eunomia (No. 15). He also found that Iris (No. 7) varies about a quarter of a magnitude in a period of about 6h 12m.124 But these variations are small, and perhaps doubtful. The variability of Eros is well known.

The planet Eros is a very interesting one. The perihelion portion of its orbit lies between the orbits of Mars and the earth, and the aphelion part is outside the orbit of Mars. Owing to the great variation in its distance from the earth the brightness of Eros varies from the 6th to the 12th magnitude. That is, when brightest, it is 250 times brighter than when it is faintest.125 This variation of light, is of course, merely due to the variation of distance; but some actual variation in the brightness of the planet has been observed.

It has been shown by Oeltzen and Valz that Cacciatore’s supposed distant comet, mentioned by Admiral Smyth in his Bedford Catalogue, must have been a minor planet.126

Dr. Max Wolf discovered 36 new minor planets by photography in the years 1892-95. Up to the latter year he had never seen one of these through a telescope! His words are, “Ich selsbt habe noch nie einen meinen kleinen Planeten am Himmel gesehen.”127

 

These small bodies have now become so numerous that it is a matter of much difficulty to follow them. At the meeting of the Royal Astronomical Society on January 8, 1909, Mr. G. F. Chambers made the following facetious remarks —

“I would like to make a suggestion that has been in my mind for several years past – that it should be made an offence punishable by fine or imprisonment to discover any more minor planets. They seem to be an intolerable nuisance, and are a great burden upon the literary gentlemen who have to keep pace with them and record them. I have never seen, during the last few years at any rate, any good come from them, or likely to come, and I should like to see the supply stopped, and the energies of the German gentlemen who find so many turned into more promising channels.”

Among the minor planets numbered 1 to 500, about 40 “have not been seen since the year of their discovery, and must be regarded as lost.”128

CHAPTER VIII
Jupiter

This brilliant planet – only inferior to Venus in brightness – was often seen by Bond (Jun.) with the naked eye in “high and clear sunshine”; also by Denning, who has very keen eyesight. Its brightness on such occasions is so great, that – like Venus – it casts a distinct shadow in a dark room.129

The great “red spot” on Jupiter seems to have been originally discovered by Robert Hooke on May 9, 1664, with a telescope of 2 inches aperture and 12 feet focus. It seems to have existed ever since; at least the evidence is, according to Denning, in favour of the identity of Hooke’s spot with the red spot visible in recent years. The spot was also observed by Cassini in the years 1665-72, and is sometimes called “Cassini’s spot.” But the real discoverer was Hooke.130

The orbit of Jupiter is so far outside the earth’s orbit that there can be little visible in the way of “phase” – as in the case of Mars, where the “gibbous” phase is sometimes very perceptible. Some books on astronomy state that Jupiter shows no phase. But this is incorrect. A distinct, although very slight, gibbous appearance is visible when the planet is near quadrature. Webb thought it more conspicuous in twilight than in a dark sky. With large telescopes, Jupiter’s satellites II. and III. have been seen – in consequence of Jupiter’s phase – to emerge from occultation “at a sensible distance from the limb.”131

According to M. E. Rogovsky, the high “albedo of Jupiter, the appearance of the clear (red) and dark spots on its surface and their continual variation, the different velocity of rotation of the equatorial and other zones of its surface, and particularly its small density (1·33, water as unity), all these facts afford irrefragable proofs of the high temperature of this planet. The dense and opaque atmosphere hides its glowing surface from our view, and we see therefore only the external surface of its clouds. The objective existence of this atmosphere is proved by the bands and lines of absorption in its spectrum. The interesting photograph obtained by Draper, September 27, 1879, in which the blue and green parts are more brilliant for the equatorial zone than for the adjacent parts of the surface, appears to show that Jupiter emits its proper light. It is possible that the constant red spot noticed on its surface by several observers, as Gledhill, Lord Rosse, and Copeland (1873), Russel and Bredikhin (1876), is the summit of a high glowing mountain. G. W. Hough considers Jupiter to be gaseous, and A. Ritter inferred from his formulæ that in this case the temperature at the centre would be 600,000 °C.”132

The four brighter satellites of Jupiter are usually known by numbers I., II., III., and IV.; I. being the nearest to the planet, and IV. the farthest. III. is usually the brightest, and IV. the faintest, but exceptions to this rule have been noticed.

With reference to the recently discovered sixth and seventh satellites of Jupiter, Prof. Perrine has suggested that the large inclination of their orbits to the plane of the planet’s equator seems to indicate that neither of these bodies was originally a member of Jupiter’s family, but has been “captured by the planet.” This seems possible as the orbits of some of the minor planets lie near the orbit of Jupiter (see “Minor Planets”). A similar suggestion has been made by Prof. del Marmol.133

Many curious observations have been recorded with reference to Jupiter’s satellites; some very difficult of explanation. In 1711 Bianchini saw satellite IV. so faint for more than an hour that it was hardly visible! A similar observation was made by Lassell with a more powerful telescope on June 13, 1849. Key, T. T. Smyth, and Denning have also recorded unusual faintness.134 A very remarkable phenomenon was seen by Admiral Smyth, Maclear, and Pearson on June 26, 1828. Satellite II., “having fairly entered on Jupiter, was found 12 or 13 minutes afterwards outside the limb, where it remained visible for at least 4 minutes, and then suddenly vanished.” As Webb says, “Explanation is here set at defiance; demonstrably neither in the atmosphere of the earth, nor Jupiter, where and what could have been the cause? At present we can get no answer.”135 When Jupiter is in opposition to the sun – that is, on the meridian at midnight – satellite I. has been seen projected on its own shadow, the shadow appearing as a dark ring round the satellite.

On January 28, 1848, at Cambridge (U.S.A.) satellite III. was seen in transit lying between the shadows of I. and II. and so black that it could not be distinguished from the shadows, “except by the place it occupied.” This seems to suggest inherent light in the planet’s surface, as the satellite was at the time illuminated by full sunshine; its apparent blackness being due to the effect of contrast. Cassini on one occasion failed to find the shadow of satellite I. when it should have been on the planet’s disc,136 an observation which again points to the glowing light of Jupiter’s surface. Sadler and Trouvelot saw the shadow of satellite I. double! an observation difficult to explain – but the same phenomenon was again seen on the evening of September 19, 1891, by Mr. H. S. Halbert of Detroit, Michigan (U.S.A.). He says that the satellite “was in transit nearing egress, and it appeared as a white disc against the dark southern equatorial belt; following it was the usual shadow, and at an equal distance from this was a second shadow, smaller and not so dark as the true one, and surrounded by a faint penumbra.”137

A dark transit of satellite III. was again seen on the evening of December 19, 1891, by two observers in America. One observer noted that the satellite, when on the disc of the planet, was intensely black. To the other observer (Willis L. Barnes) it appeared as an ill-defined dark image.138 A similar observation was made on October 9 of the same year by Messrs. Gale and Innes.139

A “black transit” of satellite IV. was seen by several observers in 1873, and by Prof. Barnard on May 4, 1886. The same phenomenon was observed on October 30, 1903, in America, by Miss Anne S. Young and Willis S. Barnes. Miss Young says —

“The ingress of the satellite took place at 8h 50m (E. standard time) when it became invisible upon the background of the planet. An hour later it was plainly visible as a dark round spot upon the planet. It was decidedly darker than the equatorial belt.”140

The rather rare phenomenon of an occultation of one of Jupiter’s satellites by another was observed by Mr. Apple, director of the Daniel Scholl Observatory, Franklin and Marshall College, Lancaster, Pa. (U.S.A.), on the evening of March 16, 1908. The satellites in question were I. and II., and they were so close that they could not be separated with the 11·5-inch telescope of the Observatory.141 One of the present writer’s first observations with a telescope is dated May 17, 1873, and is as follows: “Observed one of Jupiter’s satellites occulted (or very nearly so) by another. Appeared as one with power 133” (on 3-inch refractor in the Punjab). These satellites were probably I. and II.

 

Jupiter has been seen on several occasions apparently without his satellites; some being behind the disc, some eclipsed in his shadow, and some in transit across the disc. This phenomenon was seen by Galileo, March 15, 1611; by Molyneux, on November 12, 1681; by Sir William Herschel, May 23, 1802; by Wallis, April 15, 1826; by Greisbach, September 27, 1843; and by several observers on four occasions in the years 1867-1895.142 The phenomenon again occurred on October 3, 1907, No. 1 being eclipsed and occulted, No. 2 in transit, No. 3 eclipsed, and No. 4 occulted.143 It was not, however, visible in Europe, but could have been seen in Asia and Oceania.[144] The phenomenon will occur again on October 22, 1913.144

On the night of September 19, 1903, a star of magnitude 6½ was occulted by the disc of Jupiter. This curious and rare phenomenon was photographed by M. Lucien Rudaux at the Observatory of Donville, France.145 The star was Lalande 45698 (= BAC 8129).146

Prof. Barnard, using telescopes with apertures from 5 inches up to 36 inches (Lick), has failed to see a satellite through the planet’s limb (an observation which has been claimed by other astronomers). He says, “To my mind this has been due to either poor seeing, a poor telescope, or an excited observer.”147 He adds —

“I think it is high time that the astronomers reject the idea that the satellites of Jupiter can be seen through his limb at occultation. When the seeing is bad there is a spurious limb to Jupiter that well might give the appearance of transparency at the occultation of a satellite. But under first-class conditions the limb of Jupiter is perfectly opaque. It is quibbling and begging the question altogether to say the phenomenon of transparency may be a rare one and so have escaped my observations. Has any one said that the moon was transparent when a star has been seen projected on it when it ought to have been behind it?”

Prof. Barnard and Mr. Douglass have seen white polar caps on the third and fourth satellites of Jupiter. The former says they are “exactly like those on Mars.” “Both caps of the fourth satellite have been clearly distinguished, that at the north being sometimes exceptionally large, covering a surface equal to one-quarter or one-third of the diameter of the satellite.”148 This was confirmed on November 23, 1906, when Signor J. Comas Sola observed a brilliant white spot surrounded by a dark marking in the north polar region of the third satellite. There were other dark markings visible, and the satellite presented the appearance of a miniature of Mars.149

An eighth satellite of Jupiter has recently been discovered by Mr. Melotte at the Greenwich Observatory by means of photography. It moves in a retrograde direction round Jupiter in an orbit inclined about 30° to that of the planet. The period of revolution is about two years. The orbit is very eccentric, the eccentricity being about one-third, or greater than that of any other satellite of the solar system. When nearest to Jupiter it is about 9 millions of miles from the planet, and when farthest about 20 millions.150 It has been suggested by Mr. George Forbes that this satellite may possibly be identical with the lost comet of Lexell which at its return in the year 1779 became entangled in Jupiter’s system, and has not been seen since. If this be the case, we should have the curious phenomenon of a comet revolving round a planet!

According to Humboldt the four bright satellites of Jupiter were seen almost simultaneously and quite independently by Simon Marius at Ausbach on December 29, 1609, and by Galileo at Padua on January 7, 1610.151 The actual priority, therefore, seems to rest with Simon Marius, but the publication of the discovery was first made by Galileo in his Nuncius Siderius (1610).152 Grant, however, in his History of Physical Astronomy, calls Simon Marius an “impudent pretender”! (p. 79).

M. Dupret at Algiers saw Jupiter with the naked eye on September 26, 1890, twenty minutes before sunset.153

Humboldt states that he saw Jupiter with the naked eye when the sun was from 18° to 20° above the horizon.154 This was in the plains of South America near the sea-level.

CHAPTER IX
Saturn

To show the advantages of large telescopes over small ones, Mr. C. Roberts says that “with the 25-inch refractor of the Cambridge Observatory the view of the planet Saturn is indescribably glorious; everything I had ever seen before was visible at a glance, and an enormous amount of detail that I had never even glimpsed before, after a few minutes’ observation.”155

Chacornac found that the illumination of Saturn’s disc is the reverse of that of Jupiter, the edges of Saturn being brighter than the centre of the disc, while in the case of Jupiter – as in that of the sun – the edges are fainter than the centre.156 According to Mr. Denning, Saturn bears satisfactorily “greater magnifying power than either Mars or Jupiter.”157

At an occultation of Saturn by the moon, which occurred on June 13, 1900, M. M. Honorat noticed the great contrast between the slightly yellowish colour of the moon and the greenish tint of the planet.158

In the year 1892, when the rings of Saturn had nearly disappeared, Prof. L. W. Underwood, of the Underwood Observatory, Appleton, Wisconsin (U.S.A.), saw one of Saturn’s satellites (Titan) apparently moving along the needlelike appendage to the planet presented by the rings. “The apparent diameter of the satellite so far exceeded the apparent thickness of the ring that it gave the appearance of a beautiful golden bead moving very slowly along a fine golden thread.”159

In 1907, when the rings of Saturn became invisible in ordinary telescopes, Professor Campbell, observing with the great Lick telescope, noticed “prominent bright knots, visible … in Saturn’s rings. The knots were symmetrically placed, two being to the east and two to the west.” This was confirmed by Mr. Lowell, who says, “Condensations in Saturn’s rings confirmed here and measured repeatedly. Symmetric and permanent.” This phenomenon was previously seen by Bond in the years 1847-56. Measures of these light spots made by Prof. Barnard with the 40-inch Yerkes telescope show that the outer one corresponded in position with the outer edge of the middle ring close to the Cassini division, and the inner condensation, curious to say, seemed to coincide in position with the “crape ring.” Prof. Barnard thinks that the thickness of the rings “must be greatly under 100 miles, and probably less than 50 miles,” and he says —

“The important fact clearly brought out at this apparition of Saturn is that the bright rings are not opaque to the light of the sun – and this is really what we should expect from the nature of their constitution as shown by the theory of Clerk Maxwell, and the spectroscopic results of Keeler.”160

Under certain conditions it would be theoretically possible, according to Mr. Whitmell, to see the globe of Saturn through the Cassini division in the ring. But the observation would be one of great difficulty and delicacy. The effect would be that, of the arc of the division which crosses the planet’s disc, “a small portion will appear bright instead of dark, and may almost disappear.”161

A remarkable white spot was seen on Saturn on June 23, 1903, by Prof. Barnard, and afterwards by Mr. Denning.162 Another white spot was seen by Denning on July 9 of the same year.163 From numerous observations of these spots, Denning found a rotation period for the planet of about 10h 39m 21s.164 From observations of the same spots Signor Comas Sola found a period 10h 38m·4, a close agreement with Denning’s result. For Saturn’s equator, Prof. Hill found a rotation period of 10h 14m 23s·8, so that – as in the case of Jupiter – the rotation is faster at the equator than in the northern latitudes of the planet. A similar phenomenon is observed in the sun. Mr. Denning’s results were fully confirmed by Herr Leo Brenner, and other German astronomers.165

Photographs taken by Prof. V. M. Slipher in America show that the spectrum of Saturn is similar to that of Jupiter. None of the bands observed in the planet’s spectrum are visible in the spectrum of the rings. This shows that if the rings possess an atmosphere at all, it must be much rarer than that surrounding the ball of the planet. Prof. Slipher says that “none of the absorption bands in the spectrum of Saturn can be identified with those bands due to absorption in the earth’s atmosphere,” and there is no trace of aqueous vapour.166

In September, 1907, M. G. Fournier suspected the existence of a “faint transparent and luminous ring” outside the principal rings of Saturn. He thinks that it may possibly be subject to periodical fluctuations of brightness, sometimes being visible and sometimes not.167 This dusky ring was again suspected at the Geneva Observatory in October, 1908.168 M. Schaer found it a difficult object with a 16-inch Cassegrain reflector. Prof. Stromgen at Copenhagen, and Prof. Hartwig at Bamberg, however, failed to see any trace of the supposed ring.169 It was seen at Greenwich in October, 1908.

A “dark transit” of Saturn’s satellite Titan across the disc of the planet has been observed on several occasions. It was seen by Mr. Isaac W. Ward, of Belfast, on March 27, 1892, with a 4·3-inch Wray refractor. The satellite appeared smaller than its shadow. The phenomenon was also seen on March 12 of the same year by the Rev. A. Freeman, Mr. Mee, and M. F. Terby; and again on November 6, 1907, by Mr. Paul Chauleur and Mr. A. B. Cobham.170

The recently discovered tenth satellite of Saturn, Themis, was discovered by photography, and has never been seen by the eye even with the largest telescopes! But its existence is beyond all doubt, and its orbit round the planet has been calculated.

Prof. Hussey of the Lick Observatory finds that Saturn’s satellite Mimas is probably larger than Hyperion. He also finds from careful measurements that the diameter of Titan is certainly overestimated, and that its probable diameter is about 2500 miles.171

The French astronomer, M. Lucien Rudaux, finds the following variation in the light of the satellites of Saturn: —


The variation of light is, he thinks, due to the fact that the period of rotation of each satellite is equal to that of their revolution round the planet; as in the case of our moon.172

The names of the satellites of Saturn are derived from the ancient heathen mythology. They are given in order of distance from the planet, the nearest being Mimas and the farthest Themis.

1. Mimas was a Trojan born at the same time as Paris.

2. Enceladus was son of Tartarus and Ge.

3. Tethys was wife of Oceanus, god of ocean currents. She became mother of all the chief rivers in the universe, as also the Oceanides or sea nymphs.

4. Dione was one of the wives of Zeus.

5. Rhea was a daughter of Uranus. She married Saturn, and became the mother of Vesta, Ceres, Juno, and Pluto.

6. Titan was the eldest son of Uranus.

7. Hyperion was the god of day, and the father of sun and moon.

8. Japetus was the fifth son of Uranus, and father of Atlas and Prometheus.173

9. Phœbe was daughter of Uranus and Ge.

10. Themis was daughter of Uranus and Ge, and, therefore, sister of Phœbe.

In a review of Prof. Comstock’s Text Book of Astronomy in The Observatory, November, 1901, the remark occurs, “We are astonished to see that Mr. Comstock alludes with apparent seriousness to the nine satellites of Saturn. As regards the ninth satellite, we thought that all astronomers held with Mrs. Betsy Prig on the subject of this astronomical Mrs. Harris.” This reads curiously now (1909) when the existence of the ninth satellite (Phœbe) has been fully confirmed, and a tenth satellite discovered.

114Nature, May 2, 1907.
115Nature, May 30, 1907.
116Publications of the Astronomical Society of the Pacific, August, 1908.
117Monthly Notices, R.A.S., 1902, p. 291.
118Monthly Notices, R.A.S., February, 1902, p. 291.
119Nature, May 24, 1894.
120Ibid., February 14, 1895.
121Ibid., September 14, 1905.
122Ibid., September 21, 1905.
123Ibid., September 28, 1905.
124Ibid., July 13, 1905.
125Nature, November 3, 1898.
126Ibid., July 14, 1881, p. 235.
127Quoted in The Observatory, February, 1896, p. 104, from Ast. Nach., No. 3319.
128Monthly Notices, R.A.S., February, 1909.
129Celestial Objects, vol. i. p. 163.
130Nature, December 29, 1898.
131Celestial Objects, vol. i. p. 166.
132Astrophysical Journal, vol. 14 (1901), pp. 248-9.
133Nature, August 27, 1908.
134Webb’s Celestial Objects, vol. i. p. 177.
135Ibid., vol. i. p. 187.
136Celestial Objects, vol. i. p. 186.
137Astronomy and Astrophysics, 1892, p. 87.
138Ibid., 1892, pp. 94-5.
139Observatory, December, 1891.
140Popular Astronomy, vol. 11 (1903), p. 574.
141Ibid., October, 1908.
142Bulletin, Ast. Soc. de France, August, 1907.
143Nature, August, 29 1907.
144Ibid., March 7, 1907.
145Bulletin, Ast. Soc. de France, June, 1904.
146The Observatory, October, 1903, p. 392.
147Astronomy and Astrophysics, 1894, p. 277.
148Nature, November 18, 1897.
149Journal, B.A.A., January, 1907.
150Journal, B.A.A., February, 1909, p. 161.
151Cosmos, vol. ii. p. 703.
152Ibid.
153Denning, Telescopic Work for Starlight Evenings, p. 349.
154Cosmos, vol. iii. p. 75.
155Journal, B.A.A., June, 1896.
156Celestial Objects, vol. i. p. 191.
157Nature, May 30, 1901.
158Bulletin, Ast. Soc. de France, August, 1900.
159Astronomy and Astrophysics, 1892.
160Astrophysical Journal, January, 1908, p. 35.
161Nature, May 22, 1902.
162Ibid., July 9, 1903.
163Ibid., July 16, 1903.
164Nature, September 24, 1903.
165Ibid., October 8, 1903.
166Astrophysical Journal, vol. 26 (1907), p. 60.
167Nature, January 30, 1908.
168Ibid., October 15, 1908.
169Ibid., October 29, 1908.
170Journal, B.A.A., March, 1908, and June 22, 1908.
171Nature, June 25, 1903.
172Bulletin, Ast. Soc. de France, June, 1904.
173Pop. Ast., vol. 12, pp. 408-9.