Za darmo

Schöpfungen der Ingenieurtechnik der Neuzeit

Tekst
0
Recenzje
iOSAndroidWindows Phone
Gdzie wysłać link do aplikacji?
Nie zamykaj tego okna, dopóki nie wprowadzisz kodu na urządzeniu mobilnym
Ponów próbęLink został wysłany

Na prośbę właściciela praw autorskich ta książka nie jest dostępna do pobrania jako plik.

Można ją jednak przeczytać w naszych aplikacjach mobilnych (nawet bez połączenia z internetem) oraz online w witrynie LitRes.

Oznacz jako przeczytane
Czcionka:Mniejsze АаWiększe Aa

Während der langen Bauzeit haben sich inzwischen die Abmessungen der Ozeanschiffe derart erhöht, daß man die Dimensionen des Kanals und seiner Schleusen erheblich vergrößern mußte. Trotzdem aber steht der Kanal dem erweiterten Nord-Ostsee-Kanal, wie die nachstehende Zusammenstellung erkennen läßt, in den Abmessungen seiner Schleusen nicht unwesentlich nach:


Die Sohlenbreite des Kanals auf der freien Strecke, das heißt außerhalb der Schleusen, beträgt zwischen 150 bis 300 m in den Seestrecken, im Culebra-Einschnitt 92 m, in den Zufahrtskanälen an beiden Ozeanen 150 m. In der oberen Haltung hat der Kanal eine Tiefe von 13,80 m, innerhalb des Sees ist diese vielfach größer. Zwischen dem tiefen Wasser der beiden Ozeane beträgt die Gesamtlänge des Kanals 80 km. Die Schleusentreppen, die von den beiden Ozeanen zu der obern Kanalhaltung emporführen, überwinden eine Höhe von 26 m. Alle Schleusen wurden als Doppelschleusen ausgeführt, das heißt jede Schleuse besitzt zwei Kammern nebeneinander, so daß gleichzeitig nach beiden Richtungen hin durchgeschleust werden kann. Die Abmessungen sind bei allen Schleusen die gleichen, in der vorstehenden Zusammenstellung angeführten. Die Sohlen und die Seitenwandungen der Schleusen sind aus Beton ausgeführt. Unsre gewährt einen Einblick in den Bau einer Schleusenwandung. Wir sehen hier links die steilabfallende Innenwandung, die mit Hilfe eines großen verschiebbaren eisernen Gerüstes fertiggestellt wird. An ihrer rechten Außenseite fällt die Wand treppenförmig ab. Die in dem Querschnitt der Wand sichtbare runde Öffnung, ein sog. Umlauf, dient zur Zuführung und Abführung des die Schleusen füllenden Wassers. Sie würde imstande sein, einem Eisenbahnzug Durchgang zu gewähren und steht durch Querkanäle mit einem entsprechenden in der anderen Schleusenwand angebrachten Umlauf in Verbindung; von diesen Umläufen tritt das Wasser durch im Schleusenboden angebrachte Öffnungen in die Schleuse hinein. Sollen kleinere, eine geringere Wassermenge erfordernde Schiffe durchgeschleust werden, so können die Schleusen durch Zwischentore in Abschnitte von 120 m und 185 m Länge zerlegt werden. Zum Abschluß der Schleusen dienen eiserne Stemmtore von 20 m Länge, 14 m bzw. 25 m Höhe und 2,15 m Stärke. Jedes Schiff wird durch elektrische Lokomotiven in die Schleusen eingebracht; Sicherheitstore und Schutzketten schützen die eigentlichen Schleusentore vor dem Rammen. Versagen diese Maßnahmen den Dienst, so kann noch eine von der Seitenmauer aus einschwenkbare Nottür den Abschluß der Schleuse bewirken.

Die Zahl der insgesamt beschäftigten Arbeiter betrug im Jahre 1911 44 000, davon 12 000 Europäer. Im Jahre 1912 war sie auf 36 000 vermindert; hiervon entfielen auf den eigentlichen Kanalbau 28 000.

Neben den umfangreichen Erdrutschungen bildet die Beschaffung der für die Speisung des Kanals, insbesondere der Schleusen, erforderlichen Wassermenge den Gegenstand der Sorge. Als Wasserhaltung dient in erster Linie der künstlich aufgestaute Gatun-See. Hier besteht die Schwierigkeit, den Staudamm und den Boden des Sees so dicht zu gestalten, daß nicht unverhältnismäßig große, die Aufrechterhaltung des Betriebs gefährdende Sickerverluste auftreten. Zwar hat man dem Damm an seiner Wurzel die außerordentliche Stärke von 518 m gegeben. Trotzdem aber wird von Fachleuten die Befürchtung ausgesprochen, daß man hierdurch eine unbedingte Wasserdichtheit nicht erzielt haben wird. Dies erscheint um so wahrscheinlicher, als der Damm an zwei Stellen über alten Flußbetten steht, die bis zu 88 m Tiefe mit Geröll, Lehm und andern Flußablagerungen angefüllt sind.

Über allen dem Kanal drohenden Fährnissen steht die Erdbebengefahr. Wie er dieser gegenüber sich verhalten wird, bleibt abzuwarten.

Während der ersten sechs Betriebsjahre, jeweilig vom 1. Juli bis 30. Juni gerechnet, hat sich der Verkehr im Panamakanal wie folgt entwickelt:



Der die Nordsee mit der Ostsee verbindende Kaiser-Wilhelm-Kanal oder Nord-Ostsee-Kanal ist in den Jahren 1887–1895 mit einem Kostenaufwand von rund 156 Mill. Mark erbaut. Er ist an 99 km lang und wurde mit einer Sohlenbreite von 22 m ausgeführt; seine Tiefe beträgt 8 m bis 10,3 m. Die Breite des Wasserspiegels beläuft sich bei gewöhnlichem Wasserstande, der dem mittleren Wasserstande der Ostsee gleicht, auf 67 m. Als Wendestelle für die größern, den Kanal durchfahrenden Schiffe dient der Audorfer See bei Rendsburg. Der Kanal ist nur an seinen beiden Enden, bei Brunsbüttel an der Elbe und bei Holtenau an der Kieler Föhrde, mit Schleusen, und zwar mit je zweien ausgestattet. Dieselben sind für gewöhnlich geschlossen und werden nur geöffnet, wenn Schiffe hindurchgelassen werden. Die Brunsbütteler Schleuse dient außerdem noch der Entwässerung. Die Endschleusen waren erforderlich, um die Schwankungen des Wasserstandes der Elbe, die schon bei gewöhnlichem Flutwechsel 2,6 m betragen, und die der Kieler Föhrde, die bei starkem Winde sehr beträchtlich sind, von dem Kanal fernzuhalten. Als dieser erbaut wurde, rechnete man damit, daß man es in der absehbaren Zukunft mit Schiffen von höchstens 145 m Länge, 23 m Breite und 8,5 m Tiefgang zu tun haben werde, und man rechnete mit einem Verkehr von etwa 18 000 Schiffen mit 5½ Mill. Netto-Registertonnen1 Raumgehalt. Allmählich überstiegen aber die Schiffe nach Zahl und Inhalt diese Voraussetzungen. Im zehnten Jahre nach der Eröffnung (1905) durchfuhren den Kanal 33 147 Schiffe mit 5 749 949 Netto-Registertonnen; hierbei hatte die Durchschnittsgröße der Schiffe sich von 94 auf 175 Netto-Registertonnen erhöht.

Inzwischen wuchsen die Abmessungen der Schiffe, sowohl der Kriegs-, wie der Handelsmarine derart, daß auf eine Erweiterung des Kanals gesonnen werden mußte; war dieser doch für Schiffe von den Abmessungen der »Mauretania«, »Lusitania«, »Olympic«, »Imperator« und »Vaterland« nicht benutzbar; dasselbe galt von den neueren Linienschiffen und den großen Kreuzern. Der seitens des Kanalamts in Kiel und des Reichsamts des Innern zu Berlin ausgearbeitete Entwurf für die Erweiterung des Kaiser-Wilhelm-Kanals fand daher im Jahre 1907 sofort die Zustimmung der gesetzgebenden Körperschaften des Deutschen Reichs. Bei den Einfahrten des Kanals sah man sogleich von einem Umbau der Schleusen ab und man ging zu deren völligem Neubau über. Dagegen wurde für das Kanalbett nur eine dem voraussichtlichen spätern Bedarf entsprechende Erweiterung angenommen, da jenes jederzeit anstandslos erweitert werden kann. Der neue Querschnitt des Kanals hat bei einer Sohlenbreite von 44 m eine Wassertiefe von 11 m und eine Breite des Wasserspiegels von 102 m. Für das Begegnen der Schiffe sind 10 zweiseitige Ausweichen von 600 bis 1100 m Länge und eine einseitige von 1400 m Länge vorgesehen. Vier der erstgenannten Ausweichen (von 1000 m Länge) sind mit Wendestellen versehen. Die Erweiterungsbauten sind so ausgedehnt, daß die für dieselben erforderlichen Bodenaushebungen im Betrage von rund 102 Mill. cbm erheblich größer sind als die bei der Herstellung des ursprünglichen Kaiser-Wilhelm-Kanals ausgebaggerten, 83 Mill. cbm betragenden Erdmassen. Die neuen Kanalschleusen sind größer als die des Panama-Kanals und die größten der Welt. Jede derselben hat eine nutzbare Kammerlänge von 330 m, eine lichte Weite von 45 m und eine Drempel- und Sohlenbreite von 13,77 m unter dem mittlern Wasserstande des Kanals. Dies bedeutet eine Tiefe von 12,4 m unter dem gewöhnlichen Elbniedrigwasser, sowie von 13,77 m unter dem mittleren Ostseewasser. Diese Tiefe soll auch beschädigten und infolgedessen tiefer gehenden Schiffen noch das Einlaufen ermöglichen.

Die Schleusen bestehen im wesentlichen aus Beton. Jede derselben hat 3 Schiebetore, von denen das mittlere die 330 m betragende Länge zwischen Außen- und Binnentor in zwei kleinere Kammern von 100 m und 221 m nutzbarer Länge zerlegt und außerdem zur Reserve dienen soll. Jede der beiden Schleusenanlagen umfaßt an 40 0000 cbm Mauerwerk. Auf der Kopfbreite der Schleusentore können zwei beladene Heuwagen von einer Schleusenkammer zur andern hinüberfahren.

Zur Überführung der den Kanal kreuzenden Landverkehrswege dienten bei dem ursprünglichen Kanale zwei eiserne Eisenbahn- und Straßenhochbrücken (Bogenbrücken), bei Grünenthal und Levensau, mit 42 m lichter Höhe über dem gewöhnlichen Wasserspiegel, eine einarmige Eisenbahndrehbrücke bei Taterpfahl, zwei Eisenbahndrehbrücken derselben Bauart und eine Straßendrehbrücke bei Rendsburg, ferner eine Prahmdrehbrücke für den Straßenverkehr in Holtenau, außerdem eine Anzahl durch Handbetrieb oder motorisch bewegter Fähren. Diese Überführungen mußten infolge der Erweiterung des Kanals wesentlich ergänzt und umgebaut werden. Die eisernen Hochbrücken bei Grünenthal, für die Eisenbahn Neumünster–Heida und eine Landstraße, und bei Levensau (Eisenbahn Kiel–Flensburg und eine Landstraße) konnten bestehen bleiben und erforderten nur neue Ufersicherungen, da ihre Spannweiten auch für den erweiterten Kanal genügten. Dagegen mußten die Drehbrücken bei Taterpfahl und Rendsburg sowie die Prahmdrehbrücken bei Holtenau durch eiserne Hochbrücken und die Straßendrehbrücke bei Rendsburg durch eine neue, weitergespannte Drehbrücke ersetzt werden. Die drei neuen Hochbrücken müssen, gleich den beiden bestehenden Hochbrücken, eine lichte Höhe von 42 m über dem mittleren Kanalwasserstand besitzen. Da diese Bauwerke in niedrigen Gegenden zu errichten waren, erforderten sie beiderseits lange Rampen mit Dammschüttungen. Hierbei gestaltete sich die Einfahrt in den Bahnhof Rendsburg sehr schwierig; sie konnte nur unter Zuhilfenahme einer Schleife ermöglicht werden, die an die den Kanal überspannende Hochbrücke führt und die größte Brückenanlage Deutschlands bildet. Die Kosten der Kanalerweiterung sind auf insgesamt 223 Mill. Mk. veranschlagt. Bemerkenswert ist, daß, wenn auch im ganzen die Kosten der Kanalerweiterung – insbesondere die Baggerarbeiten und die Anlage der Schleusen – die entsprechenden Kosten des ursprünglichen Kanals erheblich übertreffen, dennoch infolge der inzwischen erfolgten Fortschritte der Technik eine im Durchschnitt billigere Ausführung möglich war.

 

Unter den zahlreichen Kanalbauten der Gegenwart nimmt der Großschiffahrtsweg Berlin–Stettin insofern eine besonders hervorragende Stellung ein, weil er bezweckt, die Hauptstadt des Deutschen Reiches mit dem Meere zu verbinden. Als bester Anschlußort Berlins an die See bot sich Stettin dar. Der Verkehr zwischen Berlin und Stettin vollzog sich in früheren Zeiten zunächst in der Weise, daß die Waren die Spree aufwärts bis zum oberhalb von Fürstenwalde belegenen Kersdorfer See befördert wurden, von hier auf dem Landwege bis Frankfurt a. O. und von dort die Oder abwärts nach Stettin gelangten. Im 17. Jahrhundert wurde eine Verbindung zu Wasser zwischen der Havel und der Oder durch den Bau des Finow-Kanals hergestellt. Dieser war aber bei weitem nicht imstande, den zwischen Berlin und Stettin bestehenden lebhaften Verkehr zu bewältigen, und so schritt man dann im Jahre 1904 zu dem Bau des Großschiffahrtsweges Berlin–Stettin. Derselbe hat eine Länge von 100 km; er beginnt in zwei Armen von Spandau und von Plötzensee aus, die sich im Tegeler See vereinigen. Sodann folgt er dem Laufe der Havel bis zum Lehnitzsee und geht von hier nach Nieder-Finow a. d. Oder. Die Spiegelbreite des Kanals beträgt 33 m, seine Tiefe 3 m. Der zu bewältigende Jahresverkehr beträgt 4 900 000 t. Für den Transport der Waren dienen 600 t-Kähne; zwei dieser Kähne können sich im Kanal anstandslos ausweichen. Die Gesamtkosten belaufen sich auf etwa 43 Mill. Mk., für die die Zinsgarantie seitens der Städte Berlin, Stettin und Charlottenburg ihrem wesentlichen Betrage nach übernommen wurde. Zwischen dem Lehnitzsee und Nieder-Finow bietet der Kanal etwas Eigenartiges dar, indem er hier höher als das benachbarte Gelände liegt. Er muß also in einem Damm dahingeführt werden, dessen Sicherung gegen Durchsickern besondere Maßnahmen, nämlich das Aufbringen einer Tonschicht erforderte, deren Stärke zwischen 30 und 80 cm schwankt. Auf dieser 50 km langen Strecke würde ein Dammbruch die Gefahr mit sich bringen, daß die Wasser des Kanals sich über die benachbarte Gegend ergießen, daß der Kanal sich entleerte und die unterwegs befindlichen Schiffe auf Grund gerieten. Um allen diesen bösen Vorkommnissen vorzubeugen, ist auf dieser Strecke an drei Stellen eine sog. Wassertorbrücke oder ein Sicherheitstor in den Kanal hineingebaut. Diese Vorrichtung besteht in einer senkrecht auf- und abwärts bewegbaren Wand, die erforderlichenfalls in das Profil des Kanals hinabgelassen werden kann und dieses absperrt, im übrigen aber stets oberhalb des Wasserspiegels schwebt und den Verkehr nicht hindert.

Der Abstieg in das Odertal bei Nieder-Finow, wo ein Höhenunterschied zwischen der Scheitelhaltung und der Oder von 36 m besteht, geschieht durch vier Schleusen. Später soll hier noch ein Hebewerk errichtet werden. Dieses Hebewerk ist in dargestellt und besteht aus einem gewaltigen aus Eisenfachwerk hergestellten Wagebalken, der an seinen beiden Enden einen Trog trägt, in welchen die Schiffe hineinfahren. Wird der Wagebalken gedreht, so senkt sich dessen eines Ende nach unten, während das andere Ende aufwärts schwingt. Hierbei werden die die Schiffe enthaltenden Tröge entweder mit der oberen oder mit der unteren Haltung in Verbindung gebracht, so daß die Schiffe dann ihre Fahrt weiter fortsetzen können. Bei Hohensaaten sind zwei Schleppzugsschleusen erbaut. Dieselben haben eine Länge von 220 m und eine Breite von 19 m; sie können einen ganzen Schleppzug von sechs großen Kähnen nebst dem Schleppdampfer auf einmal durchschleusen. Bemerkenswert ist noch der Brückenkanal, der bei Eberswalde den Kanal über die 11 m tiefer liegende Eisenbahn Berlin–Stettin hinwegführt. Zum Ablassen des Kanals dient eine ungefähr in der Mitte der Scheitelhaltung vorgesehene Anlage. Diese besteht aus einem durch eine kleine Pumpe in Gang zu setzenden Heber, der in der Sekunde bis zu 4000 l Wasser über den Kanaldamm hinweg in den Mäckersee hinüberpumpt, der dann das Wasser durch den Finow-Kanal der Oder zuführt.

Die Erfahrungen des Weltkrieges haben ergeben, daß das Fehlen eines die Eisenbahnen entlastenden Netzes von Wasserstraßen sich sehr störend bemerkbar macht, sobald erstere in Folge anderweitiger Überlastung die Beförderung der landwirtschaftlichen Erzeugnisse, der Kohle, des Eisens und sonstiger Massengüter nicht ausführen können. Daher befinden sich jetzt zwei wichtige deutsche Kanalverbindungen im Bau und in weiterer Ausgestaltung: der vom Westen zum Osten führende Mittellandkanal und der die Donau mit dem Rhein verbindende Rhein-Donau-Kanal. Der Bau dieser Wasserstraße wurde schon von Goethe als erforderlich bezeichnet, der aber die Kosten für unerschwinglich hielt »zumal in Erwägung unserer deutschen Mittel«.

Wenngleich zur Überwindung der von Kanälen zu überschreitenden Höhenzüge und Gebirge meist Schleusentreppen genügen, die die Höhe allmählich erklimmen, so treten doch hin und wieder auch Verhältnisse auf, die dazu zwingen, die Höhendifferenzen in einem einzigen Absatz zu überwinden. Das vorstehend beschriebene bei Nieder-Finow geplante Schiffshebewerk bildet hierfür ein Beispiel. Ein anderes Beispiel, das im Zuge des Dortmund-Ems-Kanals bei Henrichenburg im Betrieb befindliche Hebewerk, stellt. Bei diesem ruht der das zu hebende oder zu senkende Schiff aufnehmende Trog auf fünf Schwimmern, die sich in in die Erde hineingebauten Brunnen auf- und abwärts bewegen können, je nachdem in diese Brunnen Wasser hineingelassen wird, das die Schwimmer und den Trog emporhebt. Soll der Trog gesenkt werden, so wird das Wasser aus den Brunnen hinausgelassen. Bei einer Anzahl von Schiffshebewerken ruht der das Schiff aufnehmende Trog auf Kolben, die in hydraulischen Zylindern durch Wasserdruck gehoben werden. Soll das Schiff gesenkt werden, so läßt man das Wasser aus den Zylindern hinaustreten.

IV. Staudämme, Talsperren und elektrische Überlandzentralen

Die ersten Anfänge des Baus von Staudämmen und Talsperren reichen bis in das frühe Altertum zurück. Schon damals erkannte man deren hohen Wert, der für jene Zeiten darin sich verkörperte, daß in wasserreichen Monaten Vorräte gesammelt wurden, die während der wasserarmen, trockenen Zeit zur Bewässerung der Ländereien dienten. Schon vor Tausenden von Jahren baute man derartige zum Teil sehr ansehnliche Wasserspeicher in Ägypten, auf Ceylon, in China, Japan und in Indien. Zu den bedeutendsten Staudämmen des Altertums gehört der Möris-See, so benannt nach seinem Erbauer, dem König Möris. Dieser gewaltige See war imstande, Milliarden von Kubikmetern Wasser aus dem Nil zur Zeit der Hochwasser aufzunehmen und aufzuspeichern. Am Euphrat errichtete schon die Königin Nitokris eine großartige Stauanlage. Aus der späteren Zeit, beginnend um die Mitte des 16. Jahrhunderts, sind die planmäßig angelegten Stauanlagen des Oberharzes zu nennen, die für die dortigen Bergwerke das Aufschlagwasser lieferten und während des Weltkrieges die Aufrechterhaltung der Kupfergewinnung ermöglichten, die an andern Orten Deutschlands durch den Kohlenmangel gehindert wurde.

Nach Dr. G. Respondek ergibt sich folgende Übersicht über die in den wichtigsten Industrieländern vorhandenen Wasserkräfte:



Demnach steht Deutschland bezüglich der Ausnutzung seiner Wasserkräfte an erster Stelle. Dagegen entfallen von seinen Wasserkräften nur 0,02 P.S. auf den Kopf der Bevölkerung, während dieser Betrag in den übrigen Ländern um ein vielfaches höher ist. Will also Deutschland im Wettkampf mit den übrigen Industrieländern nicht unterliegen, so muß es seine Wasserkräfte voll ausbauen.

In der neuesten Zeit hat der Bau der Staudämme und Talsperren auf Grund wissenschaftlicher Vertiefung einen ungeahnten Aufschwung genommen, und wir begegnen zurzeit in allen Weltteilen Neubauten und Plänen, deren einer den andren an Größe überbietet. Es ist dies zu einem erheblichen Teil das Verdienst des im Jahr 1904 verstorbenen Aachener Professors Intze.

Die Talsperren können verschiedenen Zwecken dienen, von denen meist mehrere bei den einzelnen Anlagen in Betracht kommen. Hier ist an erster Stelle die Gewinnung von Kraft zu nennen; diese ist in der neusten Zeit um deswillen von besonderer Bedeutung, weil der mittels der Wasserkräfte erzeugte elektrische Strom bequem und wirtschaftlich vorteilhaft über weite Strecken dahingeleitet und zum Betrieb von Arbeitsmaschinen aller Art benutzt werden kann. An sonstigen Aufgaben, die die Staudämme zu erfüllen haben, sind zu nennen: der Hochwasserschutz, die Bewässerung von Ländereien, die Versorgung von Ortschaften mit Trinkwasser, die Erhöhung des Niedrigwassers der Flüsse und – was neuerdings von besonderer Wichtigkeit ist – die Speisung der Schiffahrtskanäle.

Die Anlage der Staudämme ermöglicht sich am bequemsten im Gebirge, denn hier kann durch Errichtung einer Staumauer ein Tal alsbald in einen Stausee verwandelt werden. Die Vorarbeiten bestehen in der auf Grund meteorologischer und statistischer Aufzeichnungen erfolgenden Feststellung der im Laufe des Jahres aus Niederschlägen und Zuflüssen zu erwartenden Wassermengen. Besondere Sorgfalt ist der Berechnung der Abmessungen der Staumauern zuzuwenden, für welche als Baustoffe in erster Linie Erde und Mauerwerk in Betracht kommen. Der Querschnitt der Mauer nimmt entsprechend der Beanspruchung, die sie durch das im Becken aufgestaute Wasser erfährt, von oben nach unten hin zu und weist oft sehr erhebliche Abmessungen auf. Fehlerhafte Berechnung der letzteren kann zu den folgenschwersten Ereignissen führen. Wir erwähnen hier als den verderblichsten Dammbruch, dem am 31. Mai 1889 der im Tale des South Forkflusses in der Nähe der Stadt Johnstown in Pennsylvanien belegene im Jahre 1842 erbaute Staudamm zum Opfer fiel; derselbe kostete gegen 4000 Menschen das Leben und verursachte einen Schaden von 35 Mill. Dollar. Dem am 27. April 1895 erfolgten Einsturz der Sperrmauer von Bouzy fielen 90 Menschen zum Opfer.

Im Innern der Mauer müssen Stollen und Rohrleitungen angebracht werden, durch welche das Wasser dem Becken entnommen und seiner Zweckbestimmung zugeführt wird. Auch müssen für den Fall, daß die aufgestaute Wassermenge einen die Mauer gefährdenden Betrag übersteigt, Überläufe und Auslässe vorgesehen werden, um rechtzeitig eine Entlastung der Mauern herbeizuführen. Die Mauern müssen ferner, um dem Druck des Wassers widerstehen zu können, nach der Wasserseite zu gewölbt verlaufen. Die älteste nach neuzeitlichen Grundsätzen erbaute Stauanlage Deutschlands ist die im Jahre 1889 begonnene Eschebachtalsperre; dieselbe dient der Wasserversorgung der Stadt Remscheid. Zu den größten Staubecken der Erde gehört die Urftalsperre bei Gmünd in der Eifel; dieselbe vermag gegen 45,5 Mill. cbm Wasser zu stauen und bezweckt die Verhütung von Hochwasser und die Lieferung von Kraft. Die Kosten ihrer Herstellung betrugen 4 Mill. Mk. Die Staumauer hat eine Höhe von 58 m und eine Länge von 228 m. Auch das Wupper- und Ruhrtal, der Freistaat Sachsen und Schlesien verfügen über eine Anzahl von großartigen Talsperren. In Schlesien sind besonders die Gebiete des Bobers und des Queis zu nennen, für die im ganzen 17 Stauanlagen geplant sind. Hier waren vor allem die verderblichen Hochwasserkatastrophen des Jahres 1897 die treibende Ursache. Die bei Marklissa belegene, 15 Mill. Kubikmeter fassende Talsperre hatte gelegentlich der Hochflut des Sommers 1907 Gelegenheit, sich segensreich zu bewähren. Diese Anlage erzielte durch Abgabe von Kraft schon im Jahr 1908 eine Jahreseinnahme von etwa 240 000 Mk. Von umfangreicheren Abmessungen ist eine andre Anlage Schlesiens, nämlich die in den Jahren 1903–1912 bei Mauer erbaute Bober-Talsperre mit einem Inhalt von 50,5 Mill. cbm. Die Sperre bei Marklissa hat eine Länge von 130 m, eine Mauerwerksmasse von 65 000 cbm und eine Höhe von 45 m. Die Sperre bei Mauer ist 270 m lang, hat eine Mauerwerksmasse von 250 000 cbm und eine Höhe von 60 m.

 

Die Abführung des aufgespeicherten Wassers geschieht für gewöhnlich durch Grundablässe, bei besondern Umständen aber, so z. B. bei Erreichung einer übergroßen Stauhöhe, durch Überfälle. Die Grundablässe liegen in der Tiefe des Staubeckens und gestatten, das Wasser von unten abzulassen. Sie bestehen in Kanälen, die mit Schieberverschlüssen ausgestattet sind; letztere werden von der Krone der Staumauer oder von einem in das Becken vorgebauten Häuschen aus bewegt. Die Weite dieser Kanäle ist oft eine sehr beträchtliche und beträgt z. B. bei der Marklissa-Sperre 1,10 m, bei der Mauer-Sperre 1,50 m. Die Schieber stehen unter einem sehr hohen Wasserdruck. Dieser beträgt bei 1,10 m Rohrweite und 40 m Wassertiefe 38 000 kg; bei 1,5 m Weite und 48 m Wassertiefe 84 000 kg. Diese Belastungen sind, da das Wasser mit mehr als 20 m Geschwindigkeit in der Sekunde austritt, mit starken Stößen verbunden. Außerdem bilden sich hinter den Verschlußvorrichtungen infolge der saugenden Wirkung des ausströmenden Wassers luftleere Räume. Aus alledem folgt, daß der Bau sicher wirkender Abschlußvorrichtungen der Grundablässe eine überaus schwer zu lösende Aufgabe bildet. Auf Grund von Versuchen ist es endlich gelungen, Schieber herzustellen, die den eigenartigen Anforderungen genügen. Die Überfälle, die z. B. bei Marklissa während des Hochwassers 780 cbm, bei Mauer sogar 1200 cbm in der Sekunde abführen müssen, werden entweder in Kaskaden- und Treppenform oder als einziger großer von der Krone der Sperrmauer sich herabstürzender Fall ausgeführt. Bei den Kaskadenüberfällen ergießt sich das von der Krone der Sperrmauer herabfallende Wasser über eine Anzahl von Treppenstufen abwärts.

Das größte Staubecken Europas ist die Edertalsperre bei Hemfurt in Waldeck mit einer Staumenge von 202,4 Mill. cbm. Dieser Stausee, dem drei blühende Dörfer vollständig und zwei Dörfer teilweise zum Opfer fielen, hat eine Länge von 27 km und eine größte Breite von 1 km. Der Anlaß zum Bau dieses mit einem Kostenaufwand von ca. 20 Mill. Mk. ausgeführten Riesenwerkes wurde durch die Notwendigkeit gegeben, den im Bau begriffenen Mittellandkanal aus der Weser zu speisen und zugleich eine Verbesserung des Fahrwassers der Weser bei niedrigem Wasserstande zu schaffen. Bei Minden überschreitet der Mittellandkanal die Weser mittels eines den Strom brückenartig überspannenden Bauwerks, eines sog. Brückenkanals, und hier sollten aus der Weser 7500 l pro Sekunde in den Kanal emporgepumpt werden. Diese Wassermenge konnte nun aber ohne schwere Schädigung der Schiffahrt der Weser nicht dauernd entzogen werden. Auch eine Kanalisation der Weser erschien nicht angängig, da der Staat Bremen seine Zusage, die bedeutenden Kosten zu tragen, zurückzog, als der preußische Landtag den Bau des Kanals nicht sogleich vom Rhein bis zur Elbe, sondern vorläufig nur bis Hannover bewilligte. Infolgedessen faßte man den Plan, im Quellgebiet der Weser Talsperren zu schaffen. Eine derselben liegt an der Diemel bei Niedermarsberg mit 45 Mill. cbm Staumenge; die zweite ist die Edertalsperre. Hier lagen die Verhältnisse besonders günstig, da das abzusperrende Tal besonders eng ist und ein sehr günstiger Baugrund zur Verfügung steht. Die Sperrmauer hat eine Höhe von 48 m über der Talsohle und eine Länge von 400 m; sie beanspruchte 300 000 cbm Mauerwerk. Am linken Abhang des Tales liegt eine große Überlandzentrale, welche die in dem Stausee aufgespeicherten Kräfte in elektrischen Strom verwandelt und in dieser Form 100 km weit fortleitet, um der Landwirtschaft und der Industrie dienstbar gemacht zu werden. Außer an den beiden Talhängen zu je sechs angeordneten 1,35 m bis 1,5 m weiten Eisenrohren ist unmittelbar unterhalb der Mauerkrone ein Überfall von 145 m Länge für das Hochwasser angebracht. Außerdem erhielt die Mauer noch 14 Notauslässe 14,5 m unterhalb der Mauerkrone. Diese werden geöffnet, wenn der Gefahrpunkt erreicht ist, d. h. wenn man das Mauerwerk nicht dem vollen Wasserdruck aussetzen will. Am Fuße der Mauer ist ein Becken von 6 m Tiefe angebracht, das zum Abfangen der von der Mauer herabstürzenden Wassermengen dient. Auf diese Weise wird die Geschwindigkeit dieser Wassermengen derart gemildert, daß sie unbedenklich ihren Weg talabwärts fortsetzen können, ohne daß zu befürchten ist, daß sie eine verheerende reißende Wirkung ausüben können.

Die im Juli 1913 in Betrieb genommene Möhnetalsperre bei Soest erhielt einen Inhalt von 130 Mill. cbm, ist vom Ruhrtalsperrenverein erbaut und bildet die zehnte im Ruhrgebiet errichtete Sperre. Sie umfaßt die Flußgelände der Möhne und Heve; der Rückstau erstreckt sich im Möhnetal auf 10 km, im Hevetal auf etwa 5 km. Ihrem Bau fielen die Dörfer Kettlersteich und Delecke zum Opfer, außerdem noch Teile einiger andrer Dörfer, so daß insgesamt 200 von 700 Personen bewohnte Gebäude niedergerissen werden mußten. Das dem Staubecken zugehörige Niederschlagsgebiet umfaßt 416 qkm mit einem jährlichen mittleren Abfluß von 245 Mill. cbm. Zur Verbindung der Ufer des Sperrbeckens, das im Grundriß die Gestalt einer ungleichschenkligen Gabel hat und sich aus dem Möhnesee und dem Hevesee zusammensetzt, sind außer der Sperrmauer zwei umfangreiche Viadukte und mehrere kleine Anlagen erbaut; der eine dieser Viadukte, der Delecke-Viadukt, besteht aus 16 Steinbogen. Die Gesamtkosten belaufen sich auf etwa 22 Mill. Mk. Der Grundriß der Mauer verläuft nach einer Parabel. Die Länge derselben beträgt an der Krone 650 m, die Höhe von der Fundamentsohle ab 40 m, vom Talboden ab 33 m, die Breite unten am Fuß 34,20 m, oben an der Krone 6,25 m. Die Abgabe des Wassers erfolgt durch vier schmiedeeiserne Rohre von 1,40 m Durchmesser; jedes derselben ist dreifach verschließbar. Das gegenwärtig seiner Verwirklichung entgegengehende großzügige »Bayernwerk« Oskar von Millers bezweckt, ein Hochspannungsnetz zu schaffen, das alle im rechtsrheinischen Bayern zerstreuten Wasser- und Dampfkräfte sammelt und deren gegenseitige Unterstützung und bessere Ausnutzung gewährleistet. Es wird darauf gerechnet, daß durch die Kuppelung der einzelnen Elektrizitäts-Erzeugungsanlagen an sonst durch Dampfkräfte zu erzeugender Elektrizität 166 Mill. Kilowattstunden jährlich im ersten und 253 Mill. Kilowattstunden im zweiten Ausbau erspart werden. Während des ersten Ausbaues kommen in der Hauptsache nur die Wasserkräfte des Walchensees in Betracht, zu denen im zweiten Ausbau noch die des Lechs bei Schwangau hinzutreten. Im Lennetal wird eine Riesentalsperre mit einem Inhalt von 180 Mill. cbm errichtet werden. Sie hat die Aufgabe des von uns bereits erwähnten Ruhrtalsperren-Vereins wesentlich zu erweitern und den genossenschaftlichen Bau von Talsperren zu fördern, indem den Vereinigungen der Triebwerkbesitzer Zuschüsse gewährt werden.

Überaus rührig sind die Vereinigten Staaten von Amerika mit dem Bau von Talsperren vorgegangen. Diese dienen hier vielfach der Wasserversorgung der Städte. Hier ist zunächst der in den Jahren 1886–1888 mit einem Aufwand von 1 200 000 Fr. erbaute Sweetwater-Damm in Kalifornien zu nennen. Seine Stauhöhe betrug ursprünglich 18,3 m, wurde aber später auf 27,45 m gebracht. Die Länge der Mauerkrone beläuft sich auf 103,6 m. Der Radius, nach welchem die Mauer verläuft, beträgt 67,66 m. Die Entnahme des Wassers erfolgt von einem in 15 m Abstand von der Mauer errichteten Turm, von dem aus sieben Öffnungen, die in verschiedenen Höhenlagen angebracht sind, bedient werden können. Das Becken faßt 22 Mill. cbm und hat eine Oberfläche von 2,95 qkm. Den im Laufe eines Jahres durch Verdunstung erfolgenden Wasserverlust schätzt man auf 1,22 m Wasserhöhe. Der in einem Nebental des Hudsons gelegene Croton-Damm liefert einen Teil der für New York erforderlichen Wassermenge; er hat einen Inhalt von 121 Mill. cbm und ein Niederschlagsgebiet von 349 qkm. Der Roosevelt-Damm in Arizona, der in den Jahren 1906–1911 mit einem Kostenaufwand von 15 Mill. Mk. errichtet wurde, faßt 1500 Mill. cbm und wäre imstande, 5200 qkm mit einer 0,3 m hohen Wasserschicht zu bedecken. Die Stärke der Mauer beträgt unten an der Wurzel 51,5 m, oben an der eine Fahrstraße tragenden Krone 5 m. Die Höhe der Mauer beträgt 85 m. Unterhalb des Dammes liegt eine Kraftstation, in welcher durch sechs Turbinen elektrischer Strom erzeugt wird, der auf 45 000 Volt transformiert und über Berge und wüste Strecken zu den Ortschaften Mesa und Phönix geleitet wird.

11 Registertonne = 100 Kubikfuß englisch = 2,83 cbm.