Za darmo

Story of the Aeroplane

Tekst
0
Recenzje
iOSAndroidWindows Phone
Gdzie wysłać link do aplikacji?
Nie zamykaj tego okna, dopóki nie wprowadzisz kodu na urządzeniu mobilnym
Ponów próbęLink został wysłany

Na prośbę właściciela praw autorskich ta książka nie jest dostępna do pobrania jako plik.

Można ją jednak przeczytać w naszych aplikacjach mobilnych (nawet bez połączenia z internetem) oraz online w witrynie LitRes.

Oznacz jako przeczytane
Czcionka:Mniejsze АаWiększe Aa

Aviation at the Beginning of the Present Century

As briefly outlined here, such was the status of aviation at the beginning of the new century. Much progress had been made and substantial vantage ground had been gained, but the problem still awaited practical solution. At this point it may be well to consider some of the features of the problem and the devices thus far evolved by long years of investigation and experiment.

The Kite

One of the simplest forms of the aeroplane is the common kite. This takes various forms. It is usually made of a framework of three light strips of wood crossing a little above the center and secured at the outer ends by similar strips, or strong cord tautly drawn and making when covered with paper a six-sided figure. From the corners of the framework cords are drawn to a common point near the center and there firmly united. At this point of union is attached the twine which is held in the hand of the kite flyer. From the base of the kite is suspended a string with light horizontal paper rolls, each about the size of a lead pencil, tied at intervals of a few inches, and forming the tail which steadies the kite in air. The paper surface of the kite is the plane on which the pressure of the air current and the power applied to the string is to lift the kite upward. As this simple form of the kite has but one plane, it may be considered a monoplane. The box kite presents two such surfaces joined together at the sides by the ends of the “box,” and may therefore be called a biplane.

When the boy flies his kite he first determines the direction of the wind and runs in that direction. In other words he flies his kite against the wind. The pressure of the moving current against the under surface keeps the kite aloft. When the boy runs against the wind, moving the kite forward with him, this pressure is increased and the kite tends to rise higher and higher. If instead of the long string and the boy there could be placed with the kite itself a very light motor that would give to it the same forward impulse, the kite would float through the air without boy or string and we would have a small aeroplane flying machine-a monoplane. If there were two kites, with parallel surfaces a few inches apart, united with light framework so that the air would pass between them, we should have a biplane. For many years the great problem in aviation was to get an engine of sufficient lightness and power to propel monoplanes, biplanes and multiplanes at an upward angle through the air.

The “Plane” Defined

It may not be out of place here to consider what Constitutes a plane, as that term is used in aviation. It is that part of the aeroplane, the pressure of the air upon the surface of which, lifts and sustains the aeroplane aloft. The plane may take a variety of forms; it may be curved or its parts may meet in an angle; it may be uniform and unbroken in shape or divided into parts. The two wings of a bird would constitute a monoplane, when they are in a horizontal position for soaring, or when the tips are uplifted and they form an angle like a broad V, called a dihedral angle. If the aeroplane has two such planes, one back of the other, it is still called a monoplane, or, more definitely, a tandem monoplane; but if one of the planes is above the other it is called a biplane. A similar arrangement of three planes, one above the other, could be called a triplane and one of several planes a multiplane.

Essentials of the Aeroplane

The planes, as already described are, of course, a necessary part of the aeroplane.

The propeller supplies motive power to the aeroplane. This moves in a circle much like the blades of the electric fan or the propeller of a motor boat or modern stern ship. By driving the air backward it propels the aeroplane forward. While the blades of the propeller are of considerable length they are usually inconspicuous in photographs, and as one who has never seen an aeroplane looks at a photograph he naturally asks, “What moves it through the air?” The propeller is driven by the engine.

The engine is usually of the gasoline type which develops high power with light weight, frequently one horse power for every three pounds of weight and in rare instances as high as one horse power for every pound of weight. These powerful little engines are marvels of mechanism and they have had much to do in the rapid modern progress of aeronautics.

The rudder, as its name indicates, guides the aeroplane in its flight. It consists in the main of small horizontal and vertical planes under the control of the pilot. These may be in the front of the machine, but they are usually placed in the rear. By skillful manipulation of these the aeroplane can be guided upward, downward, to right or left at will. It is also guided and controlled as we shall see, by the “warping” or “curving” of the wings or planes.

The Wright Brothers and Their Problem

The dawn of the twentieth century was to immortalize new names in the annals of aviation. In the city of Dayton, Ohio, two brothers in a modest way were conducting a bicycle repair shop. From youth they had been inseparable in their aims and work. They were the sons of Bishop Milton Wright of the United Brethren Church. They had each a high school education but had not attended college. In 1878, when they were boys of seven and eleven years respectively, their father brought them one evening a little flying toy, a small helicopter, the motive power of which was furnished by a rubber band wound around the shafts of two propellers so as to drive them, when “wound up” and released, in opposite directions. The toy was made of light material to resemble a bird. When the father released it in the presence of the wondering boys, to their astonishment it flew upward in the room, rose to the ceiling and after fluttering there for a little while fell to the floor. They did not concern themselves much about the name of the toy, but properly called it what to their minds it most closely resembled-“the bat.” They afterward made other toys like it and discovered that as they were increased in size they flew less successfully. They early developed a fondness for kite flying and in this were regarded as experts. When they grew to manhood, however, they abandoned these boyish sports and devoted themselves industriously to their machine and repair shop. “The bat” and the kite became memories, but the memories of youth have power to shape the thoughts of manhood, and this early observation and experience with aerial toys gave to Wilbur and Orville Wright an interest in the attempts at aviation that were chronicled in the press from time to time through the decade immediately preceding this new century.

In the year 1896 Orville, the younger of the two brothers, was convalescing from a serious attack of typhoid fever. Wilbur, who had been carefully attending him, was one day reading aloud an account of the death of Otto Lilienthal, the German aviator, who was killed while experimenting with his glider. The details of the tragic accident, together with an account of what he had accomplished by years of investigation and experiment, interested the brothers, who resolved as soon as possible to apply themselves to the construction of a glider in which flights could be made with comparative safety. The enthusiasm of Orville over the project ran so high that it almost caused a return of the fever. As soon as he had fully recovered, the two brothers returned to their bicycle shop and applied themselves with increasing zeal to the study of aeronautics, and after a time began the construction of a glider.

The Wright brothers were peculiarly well equipped for the work upon which they had entered. They were men of unflagging industry, abstemious habits, few words and the happy faculty of keeping their own counsel. Wilbur was unusually reticent. It is said of him that he spoke only when he had something to say and then in a manner singularly brief and direct. “He had an unlimited capacity for hard work, nerves of steel and the kind of daring that makes the aviator face death with pleasure every minute of the time he is in the air.” Orville, while much like his brother, is more talkative and approachable. Both were modest and unassuming when they began their work and continued so when the world applauded their achievements.

In the study of the problem upon the solution of which they ventured, they had of course the advantage of all that had thus far been achieved by those who had preceded them in this field of investigation and experiment. Professor Langley had already perfected his first monoplane to such an extent that short flights were successfully made with a light steam-propelled model. He was continuing his experiments and the Wright brothers read with avidity the results of his work. Every scrap of information that they could gather from others who had essayed the solution of the problem was now collected and made the subject of critical study. At first taking up aeronautics merely as a sport, they soon afterward with zest began its more serious pursuit. “We reluctantly entered upon the scientific side of it.” they said, “but we soon found the work so fascinating that we were drawn into it deeper and deeper.”