Za darmo

Die Welt auf Schienen

Tekst
iOSAndroidWindows Phone
Gdzie wysłać link do aplikacji?
Nie zamykaj tego okna, dopóki nie wprowadzisz kodu na urządzeniu mobilnym
Ponów próbęLink został wysłany

Na prośbę właściciela praw autorskich ta książka nie jest dostępna do pobrania jako plik.

Można ją jednak przeczytać w naszych aplikacjach mobilnych (nawet bez połączenia z internetem) oraz online w witrynie LitRes.

Oznacz jako przeczytane
Czcionka:Mniejsze АаWiększe Aa

Feuerkiste und Rauchkammer stehen durch die Heiz- oder Rauchrohre in engstem Zusammenhang miteinander. Auf dem Weg zwischen ihnen findet die Ausnutzung der heißen Gase für die Erwärmung des Wassers statt. Nur diejenige Wärme ist nutzbar angewendet, welche die Gase vor ihrem Eintritt in der Rauchkammer abgegeben haben. Bei ordnungsgemäßem Zusammenarbeiten aller Vorrichtungen dürfen die Gase, die in der Feuerkiste bis zu 1600 Grad erhitzt waren, in der Rauchkammer nur noch 300 bis 500 Grad haben. Diese Wärme ist ein Rest, der notwendigerweise verloren gehen muß. Die Lokomotive ist eben auch eine Dampfmaschine und hat darum letzten Endes ein ebenso geringes Nutzergebnis wie alle anderen Vorrichtungen dieser Art.

Das Hineinsaugen der Heizgase in die Rauchkammer geschieht durch die Wirkung des Blasrohrs, dessen Öffnung genau unter der Mitte des Schornsteins sitzt. Der in gewaltigen Stößen rasch ausströmende Dampf erzeugt in der Rauchkammer eine Luftverdünnung. Es muß darum Luft nachströmen, und das kann nur dadurch geschehen, daß sie vom Aschkasten her durch den Rost und die Feuerung hindurch eintritt, indem sie diese anfacht.

Das Blasrohr spielt im Wärmehaushalt der Lokomotive eine außerordentlich große Rolle. Es vermag jedoch naturgemäß nur zu arbeiten, wenn aus den Zylindern Dampf ausströmt, das heißt also nur dann, wenn die Maschine sich in Bewegung befindet. Beim Anheizen der Lokomotive und auch beim Nachfeuern während des Stillstands auf Bahnhöfen möchte man trotzdem nicht vollständig auf die anfachende Blaswirkung verzichten. Aus diesem Grund ist über dem Hauptbläser stets noch ein Hilfsbläser angebracht, dem durch Betätigen eines Hebelzugs im Führerstand Frischdampf unmittelbar aus dem Kessel zugeführt werden kann.

Der Funkenfänger, welcher, um das Herausfliegen kleiner glühender Kohlestückchen aus der Rauchkammer zu verhindern, deren Raum gegen den Schornstein abschließt, darf keine zu geringen Öffnungen haben, denn dadurch würde die durch die Blasrohrwirkung erzielbare Luftverdünnung in der Kammer stark herabgesetzt werden. Man bildet die Funkenfänger daher nicht immer aus engmaschigen Sieben, sondern bringt im oder am Schornstein auch gebogene Flächen an, die sich dem senkrecht nach oben gerichteten Funkenstrom entgegenstellen, die Stückchen anprallen lassen, so daß sie wieder in die Rauchkammer zurückfallen.

Ein ganz besonders wirksames Mittel gegen allzu reichlichen Funkenwurf befindet sich noch in der Feuerung. Unmittelbar unter dem Ansatz des Rundkessels ist, von der hinteren Wand der Feuerkiste oder aus deren unmittelbarer Nähe vorspringend, ein Schirm aus feuerfesten Steinen aufgemauert. Ein großer Teil der vom Luftstrom hochgerissenen, glühenden Kohlestückchen wird bereits von dessen Unterfläche zurückgehalten. Der Feuerschirm hat dazu die noch weit wichtigere Aufgabe, ein allzu rasches Abströmen der Heizgase in den Rundkessel zu verhüten. Er sorgt dafür, daß ihre Hitze auch für den Wasserraum im Stehkessel nutzbar wird, indem er die Gase zwingt, um seine weit vorspringende Vorderkante herumzustreifen, also etwas länger in der Feuerkiste zu verweilen. Außerdem schützt er auch die Enden der Heizrohre vor allzu scharfem Angriff durch das Feuer.

Um die im Kessel erzeugte Hitze möglichst wenig nach außen abströmen zu lassen, ist dieser in seiner ganzen Ausdehnung mit Einschluß des Doms und der Zylinder, die ja auch noch zum Dampfraum gehören, mit einer Verkleidung bedeckt. Sie besteht aus dünnen Blechen, die in einem Abstand von mehreren Zentimetern um die gesamten Außenflächen herumgeführt sind. Es wird hierdurch um den Dampfraum eine ruhende Luftschicht gebildet, die bekanntlich ein sehr gutes Wärmeschutzmittel ist. Die Zylinder werden noch besonders durch zwischengelegte Asbesttücher geschützt, und das gleiche geschieht an den Kesselwandungen, die dem Innern des Führerhauses zugekehrt sind, um die Mannschaft nach Möglichkeit vor der Wärmestrahlung zu schützen.

Während des Kriegs ist man, da Asbest bald nicht mehr zu haben war, zu einem Ersatz der Wärmeschutzpackung durch Glasgespinst geschritten. Allerfeinste Glasfäden sind zu watteähnlichen, weichen Tafeln verarbeitet und mit bestem Gelingen als Wärmeschutztücher verwendet worden. Diese Glaswolle, neben der auch Gespinste aus Hochofenschlacke in Anwendung gekommen sind, ist als eine der vielen dauernden Bereicherungen der Technik zu betrachten, die der Krieg uns gebracht hat.

Infolge des Wärmeschutzanzugs, den jeder Kessel trägt, kann man von außen her weder die Stehbolzenköpfe am hinteren Kessel, noch die Nietnähte an Dom und Rundkessel wahrnehmen.

Mit harter Eckigkeit ragt unter der wohlgerundeten Fügung des Kessels nach allen Seiten die stählerne Quader hervor, die ihn auf ihrem Rücken trägt. Der Rahmen, der die Aufgabe hat, wie eine gewaltige Klammer den Gesamtbau der Lokomotive zusammenzuhalten, der Kessel, Trieb- und Laufwerk erst zu einem einheitlichen Kraftkörper zusammenfaßt, besteht entweder aus starken Blechen oder aus schmalen eisernen Trägern, die zusammengenietet oder geschweißt sind. Im ersten Fall spricht man von einem Platten-, im anderen von einem Barrenrahmen. Der Rundkessel, der in Querstützen auf dem Rahmen liegt, ist an ihm nur in der Nähe der Rauchkammer festgeschraubt. Sonst liegt er frei gleitend auf den Trägern und ist auch hinten in die Feuerkistenhalter so eingelegt, daß er sich um ein gewisses Stück nach vorwärts und rückwärts verschieben kann. Das ist notwendig, um dem langen Kesselbau die Zusammenziehung und Ausdehnung nach den wechselnden Graden seiner Erwärmung zu ermöglichen.

Damit der immerhin zarte Bau des Röhrenkessels und der gleichfalls auf dem Rahmen erbaute Führerstand vor den argen Stößen geschützt werden, die durch das Überfahren der Schienenstöße entstehen, ist der Rahmen nicht fest und unmittelbar mit den Laufachsen verbunden, sondern federnd auf diese gesetzt. Das Zwischenglied wird durch lange Blattfedern gebildet, die aus mehreren Lagen kräftiger Stahlbleche zusammengesetzt sind; die Stahlbleche werden in der Mitte durch einen Bund zusammengehalten. Die Enden der Federn sind durch verstellbare Gehänge mit dem Rahmen verbunden, der mittlere Federbund ruht auf dem Gehäuse des Achslagers oder ist darangehängt.

Die Federn haben nicht allein die Aufgabe, die Stöße zu mildern, sie werden auch gleichzeitig dazu benutzt, einen Ausgleich zu schaffen, wenn zwei benachbarte Achsen der Lokomotive infolge von Erschütterungen verschiedenartig belastet werden. Zu diesem Zweck sind die Enden benachbarter Federn durch Ausgleichhebel miteinander verbunden. Wird die eine der Federn durch die senkrecht über ihr aufgestellte Last stark niedergedrückt und gespannt, so zieht sie auch die andere an, so daß durch verstärkten Druck des Federbunds auch die Nachbarachse an der Belastung mitträgt. Ein solcher Ausgleichhebel ist zwischen Mittel- und Hinterachse des auf dargestellten Tenders deutlich zu erkennen.

Der Kessel liegt heute oft recht hoch über dem Rahmen und damit auch in ziemlich beträchtlicher Höhe über der Schienenoberkante. Man gibt ihm diese Stellung, weil man den Durchmesser der Rundung gern größer macht, als der Raum zwischen den oft sehr hohen Rädern es ermöglicht. Ein geräumiger Kessel ist dringend nötig, um die für den heutigen scharfen Betrieb erforderlichen großen Dampfmengen stets zur Verfügung zu haben.

Die Entwicklung der Lokomotive ist eine Zeitlang dadurch aufgehalten worden, daß man sich fürchtete, den Schwerpunkt des Kessels hochzulegen. Man glaubte, daß die Maschine dann beim Fahren allzu stark schwanken würde oder gar in Krümmungen kippen könnte. Crampton schuf nur aus diesem Grund im Jahre 1846 eine heute recht seltsam aussehende Lokomotive mit nur einer Treibachse, die weit hinter dem Kessel angebracht war, damit er diesen recht tief legen und doch ziemlich geräumig ausgestalten konnte. Die Cramptonsche Lokomotive hat lange auch bei uns in Deutschland eine recht große Rolle gespielt, da sie als einzige den begehrten großen Dampfraum besaß. Wogegen Crampton mit seinem eigenartigen Bau ankämpfte, war die allzu große Schmalheit der Regelspur, wie wir sie ja noch heute besitzen. Für Brunel wurde die Schwierigkeit der Kesselvergrößerung auf der Regelspur der Grund, beim Bau der Großen West-Eisenbahn in England die Breitspur einzuführen. Denn hierbei konnte er die Räder weiter auseinander legen, also ohne Schwierigkeit einen größeren Kessel einbauen und so die ganze Bahn leistungsfähiger machen. Hierüber ist auch bereits auf Seite 84 gesprochen worden.

Heute ist die Furcht vor einer hohen Kessellage überwunden. Man hat vielmehr eingesehen, daß ein Emporschieben des Schwerpunkts die Stöße des Fahrzeugs gegen das Gleis mildert, dieses schont und rückwirkend auch die Maschine selbst. Manchmal geht man hierin jetzt sogar über das unbedingt notwendige hinaus, nur um nebensächliche Vorteile zu erringen. So zeigt die von der Hannoverschen Maschinenbau-Aktiengesellschaft für eine Bahnstrecke in Venezuela erbaute, auf dargestellte Lokomotive eine besonders hohe Kessellage, durch die das innen liegende Triebwerk sehr bequem zugänglich wird.

Lokomotiven mit hochliegenden Kesseln sind dem Auge nicht wohlgefällig. Man beschaue die auf dargestellte Lokomotive. Sie zeigt einen schönen Zusammenklang aller Einzelformen, befriedigt aber doch das künstlerische Gefühl nicht so wie die andere Maffei-Lokomotive, die auf dem vor dem Titel wiedergegeben wird. Da diese eine Güterzugmaschine mit niedrigen Rädern ist, so konnte der Kessel hier sehr viel tiefer gelegt werden. Unser Schönheitsempfinden nimmt für diesen Fall seinen Maßstab wahrscheinlich vom Bau der Tiere her. Niemals finden wir in der heutigen Tierwelt massige Leiber auf lange, dünne Beine gestellt, wie dies bei unseren großen Schnellzug-Maschinen der Fall zu sein scheint. Sie sehen so aus, als wenn ihr Unterbau für die darauf ruhende Last nicht genügend kräftig wäre, und das verhindert die Auslösung eines Gefühls voller Befriedigung bei ihrem Anblick.

 

Die Zylinder sind unter gewöhnlichen Umständen heute stets vorn am Rahmen aufgehängt. Über ihrer Wölbung liegt der Schieberkasten, in dem sich die Vorrichtung für die Steuerung des Dampfs hin und her bewegen kann. Die Schieber sind entweder flache Teller oder runde Kolben, die den aus den Zuströmungsrohren kommenden Dampf bald vor die eine, bald vor die andere Seite des Kolbens treten lassen. Auch Steuerung durch Ventile, wie sie bei den ortsfesten Maschinen schon längst mit bestem Erfolg in Gebrauch sind, wird heute bisweilen bei großen Lokomotiven angewendet.

Die Zylinderkörper selbst bestehen aus Gußeisen und stellen oft recht gewaltige Gußstücke dar. Der scheibenförmige Kolben gleitet in dem mit äußerster Genauigkeit ausgebohrten Gehäuse und ist durch eingesetzte, federnde Ringe aus Gußeisen abgedichtet.

Um den Lokomotiven für die sehr schnell fahrenden Züge, welche der Personenbeförderung dienen, und für das Schleppen der immer schwerer werdenden Güterzüge genügend Kräfte zu verleihen, ist es notwendig, möglichst große Kolbenflächen zu schaffen, auf die der Dampf wirken kann. Das erheischt zugleich eine Vergrößerung der Zylinder. Aber wegen der schmalen Begrenzung des lichten Raums ist man mit den Durchmessern der einzelnen Zylinder in ziemlich enge Grenzen gebannt. Wenn man trotzdem große Kolbenflächen zur Verfügung haben will, bleibt nichts übrig, als die Zahl der Zylinder zu vermehren.

In der Tat gibt es heute weit weniger Lokomotiven mit nur zwei Zylindern, als der Nichtfachmann auf Grund seiner rein äußerlichen Betrachtungen annimmt. Er sieht stets nur die beiden außenliegenden Dampfbehälter, dazwischen sind aber bei den großen Maschinen meist noch ein oder zwei weitere Zylinder untergebracht. Aus besonderen Gründen ist es auch öfter notwendig, die vier Zylinder so anzuordnen, daß zwei Paare hintereinander liegen. Ja es sind in Amerika bereits Maschinen mit drei Zylinderpaaren gebaut worden. Die Führung des Dampfs zu und zwischen diesen vielen Zylindern, von denen oft zwei durch denselben Schieber gesteuert werden, ist sehr vielfältig durchgebildet und macht oft sehr große Schwierigkeiten. Davon werden wir noch zu sprechen haben.

Die Übertragung der durch den Dampfdruck auf den Kolben hervorgerufenen Bewegung auf das Laufwerk geschieht durch das Triebgestänge. Dieses, einschließlich des Kolbens, trägt die Hauptschuld an dem trotz aller Bemühungen immer noch merkbaren nickenden und zuckenden Gang der Lokomotiven. Denn das Triebwerk ist nicht in gleichförmiger Bewegung. Seine schweren Gewichte wechseln unaufhörlich ihre Geschwindigkeit, ja sogar die Richtung ihrer Bewegung. Trotz vieler Maßnahmen gelingt es bis heute niemals ganz, diese hin und her gehenden Massen abzugleichen. Am ehesten gelangt man noch zu einem vollständig ruhigen Gang bei Vierzylinder-Lokomotiven, weil hier die Bewegungen der Triebwerke so gegeneinander verschoben werden können, daß die hergehenden Massen stets den hingehenden entgegenarbeiten.

An dem Kolben ist die Kolbenstange befestigt, die durch eine Stopfbüchse aus dem hinteren Deckel des Zylinders ins Freie tritt. Diese Stopfbüchse sowohl wie alle anderen Abschlüsse an Stellen, wo bewegte Teile aus dem Dampfraum der Lokomotive hervortreten, sind hohe technische Kunstwerke. Müssen sie doch gleichzeitig eine spielend leichte Bewegung der Stangen gestatten und dem hochgespannten Dampf den Weg nach außen versperren. Durch die Packung in den Stopfbüchsen wird tatsächlich eine fast vollkommene Abdichtung erreicht. Die Kolbenstange selbst ist so fein geschliffen, daß ihr Durchmesser nicht um mehr als den hundertsten Teil eines Millimeters von der vorgeschriebenen Größe nach oben oder unten abweicht.

Das dem Zylinder abgekehrte Ende der Kolbenstange ruht in einer Geradführung, die nach einem aus dem Englischen stammenden Wort der Kreuzkopf heißt. Dieser bewegt sich auf einer feinst vorgerichteten Gleitbahn. Vom Kreuzkopf zu der mächtigen Hauptkurbel führt die Schubstange. Von der Hauptkurbel wiederum wird durch eine Kuppelstange der Antrieb für das nächste Kuppelrad abgeleitet, und von dessen Kurbel geht es, falls dies notwendig ist, auf die gleiche Weise weiter zu den anderen Kuppelrädern. Neben der Hauptkurbel ist dann noch eine kleinere Kurbel angebracht, mit deren Hilfe die Bewegung eines besonderen Teils des Steuerungsgestänges, der Schwinge, hervorgerufen wird; ein zweiter Antrieb der Steuerung erfolgt gewöhnlich vom Kreuzkopf aus.

Diese doppelte Anlenkung der Steuerung läßt schon erkennen, daß dieser Triebwerksteil recht verwickelte Bewegungen auszuführen hat. Sie sind notwendig, weil von der Anordnung und den Verschiebungen der Steuerungswerkzeuge die Güte der ganzen Maschine in hohem Grad abhängig ist. Gute oder schlechte Steuerungen können den Verbrauch von viel oder wenig Kohle herbeiführen, denn sie bestimmen hauptsächlich den Dampfverbrauch.

Die alten Stephenson-Lokomotiven waren richtige Kohlenfresser, weil ihre Steuerungen nichts weiter taten, als den Dampf im ungefähr richtigen Augenblick bald vor die eine, bald vor die andere Kolbenseite zu führen. Die Zylinderräume blieben während des ganzen Hubs mit dem Kessel in Verbindung, so daß stets der in diesem herrschende, volle Druck auf sie wirkte. Sie arbeiteten, wie man sagt, mit ganzer Füllung.

Heute bewirkt man durch die Steuerung einen Abschluß vor Beendigung jedes Kolbenhubs, weil sonst die Dehnungsfähigkeit des Dampfs nicht ausgenutzt würde. Ist nämlich der Zylinderraum zum Teil mit Dampf gefüllt, so hat dieser das Bestreben, sich mit großer Kraft auszudehnen. Es genügt also, wenn man den Zylinder nur während eines Teils des Kolbenhubs mit dem Kessel in Verbindung läßt. Über den Rest seines Wegs wird der Kolben dann von der sich dehnenden Dampfmenge geschoben. Es ist klar, daß man durch diese Voreilung des Schiebers weniger Dampf und damit auch weniger Kohle verbraucht.

Den günstigsten Augenblick des Zylinderabschlusses für jede Maschine zu ermitteln, ist Sache eingehender Berechnungen. Aber der Füllungsgrad hat sich auch nach den wechselnden Anstrengungen der Lokomotive zu richten. Auf Steigungen ist der beste Füllungsgrad ein anderer als bei Fahrten in der Ebene, bei höchster Geschwindigkeit ein anderer als bei langsamer Fahrt. Aus diesem Grund ist das Schiebergestänge so eingerichtet, daß die Füllung jederzeit mechanisch geändert werden kann und zwar vom Führer aus durch die uns bereits bekannte Steuerungskurbel.

Die Verstellung wird dadurch ermöglicht, daß das Ende der Antriebsstange für den Schieber nicht fest, sondern verschiebbar gelagert ist. Es kann in der Vorrichtung, von welcher die Bewegung der Stange abgeleitet wird, der Schwinge, nach oben und unten verschoben werden, wodurch bewirkt wird, daß die Stange bald längere, bald kürzere Bewegungen vollführt. Hierdurch wird nicht nur die Füllung verändert, sondern es kann auch durch vollständige Umstellung der Steuerung Vorwärtsfahrt in Rückwärtsfahrt umgewandelt werden. An dem verschiebbaren Teil, dem Schwingenstein, der trotz seiner Benennung natürlich aus Stahl gefertigt ist, greift die lange, vom Führerstand herkommende Stange an.

Die heute verwendeten Steuerungen weisen eine Fülle der verschiedenartigsten Bauarten auf.

Wie jede andere Kolben-Dampfmaschine ist auch die Lokomotive eine Maschine mit totem Punkt. Wenn die Kurbel eines ihrer Triebwerke genau wagerecht liegt, wenn also Kolbenstange und Schubstange eine gerade Linie bilden, so ist hier eine Drehwirkung nicht möglich. Bei ortsfesten Maschinen überwindet man diese bei jedem Kolbenhub zweimal eintretenden toten Punkte durch das Beharrungsvermögen des Schwungrads. Bei der Lokomotive, an welcher eine solche Vorrichtung nicht anzubringen ist, kommt man über die Totlagen dadurch hinweg, daß man bei doppeltem Triebwerk die Kurbeln um 90 Grad gegeneinander versetzt. Liegt also z. B. die rechte Kurbel wagerecht, wobei sie keine Drehung hervorzurufen vermag, so befindet sich die andere gerade in der senkrechten Mittelstellung, welche die größte Angriffsleistung ermöglicht.

Kessel, Rahmen und Maschine werden vom Laufwerk, den Achsen und Rädern, getragen. Die Räder dienen gleichzeitig dazu, die Bewegung der Kolben in Fortbewegung der Lokomotive auf dem Gleis zu verwandeln, indem sie diese bei ihrer Drehung durch Reibung auf den Schienen vorwärtstreiben.

Die Achsen sind die am höchsten beanspruchten Teile jeder Lokomotive. Jede von ihnen muß eine sehr schwere Belastung aushalten und gleichzeitig die schweren Stöße an den Schienenenden ohne nachgiebiges Zwischenwerk aufnehmen. Dazu kommt noch die hohe Beanspruchung durch die Kolbendrücke, welche bis zu 40 000 kg betragen kann. Achsen werden daher stets aus dem besten, zähesten Stahl in einem Stück geschmiedet. Der zuverlässigste Baustoff, der überhaupt erlangt werden kann, ist für sie gerade gut genug.

Bei Zwei-Zylinder-Maschinen sind die Achsen stets gerade, bei Anwendung einer größeren Zahl von nebeneinanderliegenden Zylindern müssen sie dagegen gebogen, gekröpft, werden. Eine Kropfachse ist, insbesondere weil die Genauigkeit der Herstellung sehr groß sein muß, stets ein äußerst schwieriges Arbeitsstück.

Die Räder bestehen heute immer aus zwei Teilen: dem inneren Stern und dem diesen umfassenden Laufkranz. Der Stern, ein schmaler Ring mit den zur Nabe laufenden Speichen, wird meist aus Stahlformguß hergestellt. Er muß gegenüber den Stößen eine gewisse federnde Nachgiebigkeit haben. Der Laufkranz oder Reifen dagegen soll hart sein, damit er auf den Schienen so wenig wie möglich abgenutzt wird. Von der Erhaltung seiner runden Form ist der ruhige Gang der Maschine in hohem Grad abhängig.

In früheren Zeiten, als auf der Eisenbahn noch geringe Geschwindigkeiten und bescheidene Lokomotivgewichte üblich waren, stellte man den Radreifen her, indem man einen stählernen Stab rund bog und die Enden zusammenschweißte. Eine solche Schweißstelle aber bedeutet immer eine Verschwächung. Auch bei sorgfältigster Arbeit ist ein vollkommenes Zusammenfügen der beiden Stabenden nicht möglich. Die Haltbarkeit ist an der Schweißnaht stets geringer als in dem übrigen, gleichförmig gefügten Teil. Ein Reifenbruch aber gehört zu den gefährlichsten Erscheinungen im Eisenbahnbetrieb. Es kommt heute wohl vor, daß ein Rad nach Abspringen des Laufkranzes auch auf seinem Stern ein kurzes Stück weiterläuft, ohne zu zerbrechen, aber das ist doch ein Ausnahmefall. Meistenteils pflegt das Springen des Reifens eine Zerstörung des ganzen Rads und damit einen schweren Zugunfall nach sich zu ziehen. Bei den heutigen hohen Geschwindigkeiten und riesigen Achslasten können daher nur noch Reifen verwendet werden, die ohne jede Schweißnaht aus einem völlig gleichförmigen Gußstahlstück bestehen.

Der nahtlose Reifen für Eisenbahnräder ist eine Erfindung Alfred Krupps. Man kann sagen, daß er hierdurch das Eisenbahnwesen geradezu gerettet hat. Die Entwicklung hätte ohne den vollkommen zuverlässigen Reifen nicht weiterkommen können.

Was Alfred Krupp der Eisenbahn so schenkte, hat diese ihm reichlich zurückgezahlt. Denn seltsamerweise verdankt der spätere Kanonenkönig den Aufstieg seiner Fabrik diesem Friedenswerk. Die großen Summen, die er in den fünfziger und sechziger Jahren für Ausprobung und Verbesserung der Geschützrohre ausgeben mußte, hatte er nur dadurch zur Verfügung, daß er bedeutende Einkünfte aus dem Verkauf der nahtlosen Radreifen zog. Das heutige riesenhafte Vermögen der Familie Krupp hat hier seine Wurzel. Noch heute sind drei ineinander gesteckte Radreifen das Fabrikzeichen der Firma Fried. Krupp in Essen.

Die Herstellung der Reifen geschieht nach dem Kruppschen Verfahren auf folgende Weise. Einer der viereckigen Stahlklötze, wie sie aus der Gießgrube kommen, wird rund vorgeschmiedet und darauf von ihm ein Stück von genügender Dicke abgeschlagen. Die volle, stählerne Scheibe kommt nunmehr unter eine Wasserpresse, die mit ungeheuren Kräften ausgestattet ist. Der mit furchtbarer Gewalt niedergehende Stempel der Presse drückt aus der Scheibe einen Pfropfen heraus, so daß diese in ihrer Mitte nunmehr eine runde Öffnung hat. Alfred Krupp selbst, dem Pressen von genügender Stärke noch nicht zur Verfügung standen, mußte die Öffnung in der Stahlscheibe weit mühsamer schaffen. Mit Meißeln wurde ein Spalt in der Scheibe erzeugt und dieser dann langsam zu einem kreisförmigen Loch erweitert.

Die gelochte Stahlscheibe wird darauf zum Reifenwalzwerk gebracht. Sie wird zwischen zwei Walzen hindurchgedreht, von denen die eine in der Mittelöffnung steckt, die andere von außen gegen den Reifen gepreßt wird. Beim Durchgang zwischen den Walzen, die allmählich enger gestellt werden, wird die Dicke des Reifens immer geringer, während der Durchmesser wächst. Eine Ausdrehung in der äußeren Walze bewirkt, daß der Reifen zugleich in roher Form den richtigen Querschnitt mit Spurkranz erhält. Nach dem Walzen wird der Reifen auf der Drehbank weiter bearbeitet.

 

Da die Lauffläche des Kranzes ganz glatt und unbeschädigt bleiben muß, so kann dieser nun nicht etwa mittels hindurchgesteckter Schrauben mit dem Stern verbunden werden. Solche Schraubenverbindungen, ja selbst Vernietungen, würden auch bei den starken Erschütterungen, denen jedes Rad ausgesetzt ist, nicht halten. Die Verbindung von Kranz und Stern wird darum auf eine andere Weise hergestellt, die das Naturgesetz der Wärmedehnung in schönster Weise ausnutzt.

Der innere Durchmesser des Radreifens wird um ein Tausendstel seiner Länge kleiner gehalten als der äußere Durchmesser des Sterns. Der Reifen ist also nicht ohne weiteres darüber zu schieben. Damit dies aber doch möglich wird, bringt man ihn in ein Rundfeuer, das den Laufkranz von allen Seiten her gleichmäßig erwärmt. Er dehnt sich aus und kann nun leicht über den Stern gelegt werden. Vorläufig ist die Verbindung noch äußerst locker. Sobald der Reifen aber erkaltet, zieht er sich mit außerordentlicher Kraft zusammen und preßt sich derartig um den Stern, daß er mit diesem geradezu ein einheitliches Ganzes bildet. Eine Trennung kann nur noch erfolgen, wenn der Reifen an einer Stelle springt. Um in einem solchen Fall, falls er einmal während des Rollen des Rads auf den Schienen eintreten sollte, ein vollständiges Loslösen des Reifens zu verhindern, wird an der Stelle, wo der Kranz auf dem Stern aufliegt, seitlich ein sogenannter Sprengring eingefügt, der wie eine Klammer Kranz und Stern am ganzen Umfang umfaßt und zusammenhält.

Auch der lichte Durchmesser der Radnabe wird etwas geringer gehalten als der Durchmesser des Achszapfens, auf den das Rad aufgesetzt werden soll. Die Vereinigung erfolgt hier durch kaltes Aufpressen mit einem Druck von 120 000 bis 150 000 Kilogramm. Damit die Radnabe diese gewaltsame Einwirkung gut übersteht, muß sie sehr starkwandig sein. Das Rad sitzt dann aber auch ohne Keil oder sonstige Verbindung unverrückbar auf der Achse.

An die Radsterne werden in der Nähe des Kranzes Gegengewichte angegossen, welche die Aufgabe haben, die beim Laufen der Maschine wechselnd auf die Achsen einwirkenden lebendigen Kräfte der sich ungleichförmig drehenden und hin und her gehenden Teile des Triebwerks nach Möglichkeit auszugleichen.

Man unterscheidet an der Lokomotive drei Arten von Achsen: Trieb-, Kuppel- und Laufachsen. Diejenige Achse, an der die Maschinenkraft angreift, an deren Kurbel also die von Kolbenstange und Kreuzkopf herkommende Schubstange angelenkt ist, heißt die Treibachse. Alle mit der Hauptkurbel durch Stangen verbundenen Achsen nennt man Kuppelachsen. Die Summe von Treibachse und Kuppelachsen ergibt die Zahl der angetriebenen Achsen. Der Rest sind vom Antrieb freie Laufachsen.

Der Durchmesser der auf den angetriebenen Achsen sitzenden Räder ist entsprechend der Geschwindigkeit zu bemessen, die man mit der Maschine erzielen will. Bei jedem vollen Gang des Kolbens, also bei jeder Vor- und Rückwärtsbewegung, drehen sich die an den angetriebenen Achsen befestigten Räder einmal herum. Ist ihr Durchmesser groß, so wird hierbei ein langer Weg zurückgelegt, bei kleinem Durchmesser ein entsprechend kürzerer. Schnellzug-Lokomotiven haben daher stets große Räder, Güterzug-Lokomotiven kleine.

Bei diesen Maschinen steht damit zugleich größere Zugkraft zur Verfügung. Denn die vom Dampfdruck durch Bewegen des Kolbens erzeugte Arbeit läßt sich, wie jede andere, in die beiden Bestandteile Kraft und Weg auflösen. Das physikalische Gesetz lautet: Arbeit = Kraft × Weg. Wird bei einem Kolbenhub nur ein kurzer Weg zurückgelegt, so ist die zur Verfügung stehende Zugkraft um so größer. Für die ja stets sehr schweren Güterzüge wird diese notwendigst gebraucht und wirkt vermindernd auf die Geschwindigkeit ein.

Die Durchmesser aller angetriebenen Räder einer Lokomotive müssen stets gleich sein. Die Laufräder dagegen können verschiedene Größen haben.

Die Gesamt-Achszahl der Lokomotive ist abhängig von ihrem Gewicht. Der Druck eines Rads auf die Schiene darf bei Hauptbahnen, wie wir wissen, 9000 Kilogramm nicht überschreiten, der Achsdruck darf also keinesfalls größer sein als 18 000 Kilogramm. Eine Maschine, die 85 000 Kilogramm wiegt, muß also mindestens fünf Achsen haben.

Die Zahl der gekuppelten Achsen wird bestimmt durch die Zugkraft, welche die Maschine entfalten soll. Damit die Lokomotive überhaupt eine Last ziehen kann, müssen die Räder, an denen die Maschinenkraft angreift, mit einem gewissen Druck gegen die Schienen gepreßt werden. Wir wissen, daß man früher ein Gleiten der Räder auf den glatten Schienen befürchtete, wenn an den Zughaken der Lokomotive eine Last gehängt würde. Darum bauten ja Blenkinsop, Brunton, Chapman und andere ihre eigenartigen Dampfwagen. Die Furcht vor dem Drehen der Räder auf der Stelle war jedoch weit übertrieben. Ein Gleiten tritt, wie wir heute wissen, unter gewöhnlichen Umständen nur ein, wenn man von der Maschine mehr als 16 der Kilogramm an Zugkraft verlangt, die das Reibungsgewicht beträgt. Hat man eine mit dem höchsten zulässigen Gewicht von 18 000 Kilogramm belastete Achse, so kann man also durch diese, eine genügende Leistung der Antriebsmaschine vorausgesetzt, getrost 3000 Kilogramm ziehen lassen. Will man 12 000 Kilogramm Zugkraft haben, so muß man mindestens drei angetriebene Achsen nehmen usw. Güterzug-Lokomotiven, die sehr schwere Züge zu befördern haben, müssen also mehr gekuppelte Achsen erhalten als Schnellzug-Maschinen.

Um aber eine genügend leistungsfähige Maschine zur Verfügung zu haben, ist es notwendig, den Kessel, insbesondere bei den Schnellzug-Maschinen mit ihren wenigen Kuppelachsen, so schwer zu machen, daß diese allein das Gewicht des hoch belasteten Rahmens nicht zu tragen vermögen. Dann muß man eben noch eine entsprechende Zahl von Laufachsen hinzufügen.

Die hohen Gewichte der heutigen Lokomotiven bringen es mit sich, daß ihr Gesamtachsstand, das heißt die Entfernung der Mitte der ersten Achse von der Mitte der letzten, zehn und mehr Meter beträgt. (Es sei hier nochmals darauf hingewiesen, daß in diesem Buch für die Entfernung der Achsen voneinander der Ausdruck Achsstand gebraucht wird, im Gegensatz zu der in Deutschland üblichen amtlichen Bezeichnung Radstand, die weit weniger treffend ist.) Solche langen Achsstände erschweren aber den Lokomotiven außerordentlich das Durchfahren von Gleisbogen, ja dies würde selbst bei den sanften, auf den deutschen Hauptbahnen üblichen Krümmungen unmöglich sein, wenn man nicht an dem Laufwerk besondere Vorkehrungen für die Fahrt durch Gleisbogen getroffen hätte.

Der Rahmen der Lokomotive ist ein starres, gerades Stück. Die Räder der an ihm fest angebrachten Achsen stehen also immer in einer vollkommen geraden Linie hintereinander. Das Gleis aber bildet in der Krümmung eine Bogenlinie, weshalb die Räder imstande sein müssen, dieser sich anzuschmiegen, wenn sie nicht entgleisen sollen. Es muß also mit anderen Worten dafür gesorgt werden, daß bei Lokomotiven mit langen Achsständen die Verbindungslinie der Achsmitten aus einer geraden Linie sich so weit wie irgend möglich in eine Bogenlinie verwandeln kann.

Man vermag dies annähernd zu erreichen, indem man einzelne Achsen seitlich verschiebbar macht, ihnen ein Seitenspiel gibt. Solche verschiebbaren Achsen vermögen, je nach der Lage der Gleiskrümmung, etwas nach rechts oder links auszuweichen, so daß sie sanft und ohne Stöße durch die Krümmung rollen. Besondere Vorkehrungen sind notwendig, um, trotz der Verschieblichkeit, eine feste Lagerung der Achsen zu erzielen. Damit ein Hin- und Herschieben in den Lagern während der Fahrt durch gerade Strecken vermieden wird, werden die verschiebbaren Achsen meist durch kräftige Federn in der Mittellage festgehalten. Erst beim Anlaufen des Spurkranzes am äußeren Rad gegen den Kopf der gekrümmten Schiene tritt die Seitenverschiebung ein. Die Verschiebbarkeit darf natürlich wenige Zentimeter nicht überschreiten.

Inne książki tego autora