Za darmo

Ants and Some Other Insects: An Inquiry Into the Psychic Powers of These Animals

Tekst
0
Recenzje
iOSAndroidWindows Phone
Gdzie wysłać link do aplikacji?
Nie zamykaj tego okna, dopóki nie wprowadzisz kodu na urządzeniu mobilnym
Ponów próbęLink został wysłany

Na prośbę właściciela praw autorskich ta książka nie jest dostępna do pobrania jako plik.

Można ją jednak przeczytać w naszych aplikacjach mobilnych (nawet bez połączenia z internetem) oraz online w witrynie LitRes.

Oznacz jako przeczytane
Czcionka:Mniejsze АаWiększe Aa

The distinction between automatism and plasticity in brain-activity is, however, only a relative one and one of degree. In the most different instincts which we are able to influence through our cerebrum, i. e., more or less voluntarily, like deglutition, respiration, eating, drinking, the sexual impulse, maternal affection, jealousy, we observe gradations between compulsory heredity and plastic adaptability, yes, even great individual fluctuations according to the intensity of the corresponding hereditary predispositions.

Now it is indisputable that the individual Pithecanthropus or allied being, whose cerebrum was large enough gradually to construct from onomatopœas, interjections and the like, the elements of articulate speech, must thereby have acquired a potent means of exploiting his brain. Man first fully acquired this power through written language. Both developed the abstract concept symbolised by words, as a higher stage in generalisation. All these things give man a colossal advantage, since he is thereby enabled to stand on the shoulders of the written encyclopædia of his predecessors. This is lacking in all animals living at the present time. Hence, if we would compare the human mind with the animal mind, we must turn, not to the poet or the savant, but to the Wedda or at any rate to the illiterate. These people, like children and animals, are very simple and extremely concrete in their thinking. The fact that it is impossible to teach a chimpanzee brain the symbols of language proves only that it is not sufficiently developed for this purpose. But the rudiments are present nevertheless. Of course the “language” of parrots is no language, since it symbolises nothing. On the other hand, some animals possess phyletic, i. e., hereditarily and instinctively fixed cries and gestures, which are as instinctively understood. Such instinctive animal languages are also very widely distributed and highly developed among insects, and have been fixed by heredity for each species. Finally it is possible to develop by training in higher animals a certain mimetic and acoustic conventional language-symbolism, by utilising for this purpose the peculiar dispositions of such species. Thus it is possible to teach a dog to react in a particular manner to certain sounds or signs, but it is impossible to teach a fish or an ant these things. The dog comprehends the sign, not, of course, with the reflections of human understanding, but with the capacity of a dog’s brain. And it is, to be sure, even more impossible to teach its young an accomplishment so lofty for its own brain as one which had to be acquired by training, than for the Wedda or even the negro to transmit his acquired culture by his own impulse. Even the impulse to do this is entirely lacking. Nevertheless, every brain that is trained by man is capable of learning and profiting much from the experience of its own individual life. And one discovers on closer examination that even lower animals may become accustomed to some extent to one thing or another, and hence trained, although this does not amount to an understanding of conventional symbols.

In general we may say, therefore, that the central nervous system operates in two ways: automatically and plastically.

The so-called reflexes and their temporary, purposefully adaptive, but hereditarily stereotyped combinations, which respond always more or less in the same manner to the same stimuli, constitute the paradigm of automatic activities. These have the deceptive appearance of a “machine” owing to the regularity of their operations. But a machine which maintains, constructs, and reproduces itself is not a machine. In order to build such a machine we should have to possess the key of life, i. e., the understanding of the supposed, but by no means demonstrated, mechanics of living protoplasm. Everything points to the conclusion that the instinctive automatisms have been gradually acquired and hereditarily fixed by natural selection and other factors of inheritance. But there are also secondary automatisms or habits which arise through the frequent repetition of plastic activities and are therefore especially characteristic of man’s enormous brain-development.

In all the psychic provinces of intellect, feeling, and will, habits follow the constant law of perfection through repetition. Through practice every repeated plastic brain-activity gradually becomes automatic, becomes “second nature,” i. e., similar to instinct. Nevertheless instinct is not inherited habit, but phylogenetically inherited intelligence which has gradually become adapted and crystalised by natural selection or by some other means.

Plastic activity manifests itself, in general, in the ability of the nervous system to conform or adapt itself to new and unexpected conditions and also through its faculty of bringing about internally new combinations of neurocyme. Bethe calls this the power of modification. But since, notwithstanding his pretended issue with anthropomorphism, he himself continually proceeds in an anthropomorphic spirit and demands human ratiocination of animals, if they are to be credited with plasticity (power of modification), – he naturally overlooks the fact that the beginnings of plasticity are primordial, that they are in fact already present in the Amœba, which adapts itself to its environment. Nor is this fact to be conjured out of the world by Loeb’s word “tropisms.”

Automatic and plastic activities, whether simple or complex, are merely relative antitheses. They grade over into each other, e. g., in the formation of habits but also in instincts. In their extreme forms they resemble two terminal branches of a tree, but they may lead to similar results through so-called convergence of the conditions of life (slavery and cattle-keeping among ants and men). The automatic may be more easily derived from the plastic activities than vice versa. One thing is established, however: since a tolerably complicated plastic activity admits of many possibilities of adaptation in the individual brain, it requires much more nervous substance, many more neurons, but has more resistances to overcome in order to attain a complicated result. The activities of an Amœba belong therefore rather to the plasticity of living molecules, but not as yet to that of coöperating nerve-elements; as cell-plasticity it should really be designated as “undifferentiated.”1 There are formed in certain animals specially complex automatisms, or instincts, which require relatively little plasticity and few neurons. In others, on the contrary, there remains relatively considerable nerve-substance for individual plasticity, while the instincts are less complicated. Other animals, again, have little besides the lower reflex centers and are extremely poor in both kinds of complex activities. Still others, finally, are rich in both. Strong so-called “hereditary predispositions” or unfinished instincts constitute the phylogenetic transitions between both kinds of activity and are of extraordinarily high development in man.

Spoken and especially written language, moreover, enable man to exploit his brain to a wonderful extent. This leads us to underestimate animals. Both in animals and man the true value of the brain is falsified by training, i. e., artificially heightened. We overestimate the powers of the educated negro and the trained dog and underestimate the powers of the illiterate individual and the wild animal.

I beg your indulgence for this lengthy introduction to my subject, but it seemed necessary that we should come to some understanding concerning the validity of comparative psychology. My further task now consists in demonstrating to you what manner of psychical faculties may be detected in insects. Of course, I shall select in the first place the ants as the insects with which I am most familiar. Let us first examine the brain of these animals.

In order to determine the psychical value of a central nervous system it is necessary, first, to eliminate all the nerve-centers which subserve the lower functions, above the immediate innervation of the muscles and sense-organs as first centers. The volume of such neuron-complexes does not depend on the intricacy of mental work but on the number of muscle-fibres concerned in it, the sensory surfaces, and the reflex apparatus, hence above all things on the size of the animals. Complex instincts already require the intervention of much more plastic work and for this purpose such nerve-centers alone would be inadequate.

A beautiful example of the fact that complex mental combinations require a large nerve-center dominating the sensory and muscular centers is furnished by the brain of the ant. The ant-colony commonly consists of three kinds of individuals: the queen, or female (largest), the workers which are smaller, and the males which are usually larger than the workers. The workers excel in complex instincts and in clearly demonstrable mental powers (memory, plasticity, etc.). These are much less developed in the queens. The males are incredibly stupid, unable to distinguish friends from enemies and incapable of finding their way back to their nest. Nevertheless the latter have very highly developed eyes and antennae, i. e., the two sense-organs which alone are connected with the brain, or supra-oesophageal ganglion and enable them to possess themselves of the females during the nuptial flight. No muscles are innervated by the supra-oesophageal ganglion. These conditions greatly facilitate the comparison of the perceptive organs, i. e., of the brain (corpora pedunculata) in the three sexes. This is very large in the worker, much smaller in the female, and almost vestigial in the male, whereas the optic and olfactory lobes are very large in the latter. The cortical portion of the large worker brain is, moreover, extremely rich in cellular elements. In this connection I would request you to glance at the figures and their explanation.

 

Very recently, to be sure, it has come to be the fashion to underestimate the importance of brain-morphology in psychology and even in nerve-physiology. But fashions, especially such absurd ones as this, should have no influence on true investigation. Of course, we should not expect anatomy to say what it was never intended to say.

In ants, injury to the cerebrum leads to the same results as injury to the brain of the pigeon.

In this place I would refer you for a fuller account of the details of sensation and the psychic peculiarities of insects to my more extended work above mentioned: Sensations des Insectes.

It can be demonstrated that insects possess the senses of sight, smell, taste, and touch. The auditory sense is doubtful. Perhaps a sense of touch modified for the perception of delicate vibrations may bear a deceptive resemblance to hearing. A sixth sense has nowhere been shown to occur. A photodermatic sense, modified for light-sensation, must be regarded as a form of the tactile sense. It occurs in many insects. This sense is in no respect of an optic nature. In aquatic insects the olfactory and gustatory senses perhaps grade over into each other somewhat (Nagel), since both perceive chemical substances dissolved in the water.

The visual sense of the facetted eyes is especially adapted for seeing movements, i. e., for perceiving relative changes of position in the retinal image. In flight it is able to localise large spatial areas admirably, but must show less definite contours of the objects than our eyes. The compound eye yields only a single upright image (Exner), the clearness of which increases with the number of facets and the convexity of the eye. Exner succeeded in photographing this image in the fire-fly (Lampyris). As the eyes are immovable the sight of resting objects soon disappears so far as the resting insect is concerned. For this reason resting insects are easily captured when very slowly approached. In flight insects orient themselves in space by means of their compound eyes. Odor, when perceived, merely draws these animals in a particular direction. When the compound eyes are covered, all powers of orientation in the air are lost. Many insects can adapt their eyes for the day or night by a shifting of the pigment. Ants see the ultra-violet with their eyes. Honey-bees and humble-bees can distinguish colors, but obviously in other tones than we do, since they cannot be deceived by artificial flowers of the most skilful workmanship. This may be due, to admixtures of the ultra-violet rays which are invisible to our eyes.

Fig. W.


Fig. F.]


Fig. M.


EXPLANATION OF THE FIGURES

Brain (supra-œsophageal ganglion) of an ant (Lasius fuliginosus), magnified 60 diameters, seen from above.

Fig. W. Brain of the Worker.

Fig. F. Brain of the Queen (Female)

Fig. M. Brain of the Male.

St. = Brain trunk. L. op. = Lobus opticus (optic lobe). L. olf. = Lobus olfactorius sive antennalis (olfactory lobe). N. = Facetted eye. N. olf. = Nervus olfactorius sive antennalis (olfactory nerve). O. = Ocelli, or simple eyes with their nerves (present only in the male and queen). H. = Cellular brain cortex (developed only in the worker and queen). C. p. = Corpora pedunculata, or fungiform bodies (developed only in the worker and queen). R. = Rudimental cortex of male.

The length of the whole ant is:

in the worker 4.5 mm;

in the queen 6.0 mm;

in the male 4.5 mm.

N. B. The striation of the corpora pedunculata and their stems is represented diagrammatically, for the purpose of indicating rather coarsely their extremely delicate fibrillar structure.

The ocelli (simple eyes) play a subordinate rôle, and probably serve as organs of sight for objects situated in the immediate vicinity and in dark cavities.

The olfactory sense has its seat in the antennæ, usually in the club-shaped flagellum, or rather in the pore-plates and olfactory rods of these portions of the antennæ. On account of its external and moveable position at the tip of the antenna, the olfactory organ possesses two properties which are lacking in the vertebrates, and particularly in man. These are:

1. The power of perceiving the chemical nature of a body by direct contact (contact-odor);

2. The power of space-perception and of perceiving the form of objects and that of the animal’s own trail by means of odor, and the additional property of leaving associated memories.

The olfactory sense of insects, therefore, gives these animals definite and clear-cut perceptions of space-relations, and enables the animal while moving on the surface of the ground to orient itself with facility. I have designated this sense, which is thus qualitatively, i. e., in its specific energy, very different from our olfactory sense, as the topochemical (olfactory) sense. Probably the pore-plates are used for perceiving odor at a distance and the olfactory rods for contact-odor, but this is pure conjecture. Extirpation of the antennæ destroys the power of distinguishing friends from enemies and deprives the ant of the faculty of orienting itself on the ground and of finding its way, whereas it is possible to cut off three legs and an antenna without seriously impairing these powers. The topochemical sense always permits the ant to distinguish between the directions of its trail, a faculty which Bethe attributes to a mysterious polarisation. The ability to sense different odors varies enormously in different insects. An object possessing odor for one species is often odorless for other species (and for ourselves) and vice versa.

The gustatory organs are situated on the mouth-parts. Among insects the reactions of this sense are very similar to our own. Will accustomed some wasps to look in a particular place for honey, which he afterwards mixed with quinine. The wasps detected the substance at once, made gestures of disgust, and never returned to the honey. Mixing the honey with alum had the same result. At first they returned, but after the disagreeable gustatory experience they failed to reappear. Incidentally this is also a proof of their gustatory memory and of their powers of association.

Several organs have been found and described as auditory. But after their removal the supposed reaction to sounds persists. This would seem to indicate that a deceptive resemblance to hearing may be produced by the perception of delicate vibrations through the tactile sense (Dugès).

The tactile sense is everywhere represented by tactile hairs and papillæ. It reacts more especially to delicate tremors of the atmosphere or soil. Certain arthropods, especially the spiders, orient themselves mainly by means of this sense.

It may be demonstrated that insects, according to the species and conditions of life, use their different senses in combination for purposes of orienting themselves and for perceiving the external world. Many species lack eyes and hence also the sense of sight. In others, again, the olfactory sense is obtuse; certain other forms lack the contact-odor sense (e. g., most Diptera).

It has been shown that the superb powers of orientation exhibited by certain aerial animals, like birds (carrier-pigeons), bees, etc., depend on vision and its memories. Movement in the air gives this sense enormous and manifold values. The semi-circular canals of the auditory organ are an apparatus of equilibrium in vertebrates and mediate sensations of acceleration and rotation (Mach-Breuer), but do not give external orientation. For the demonstration of these matters I must refer you to my work above-cited. A specific, magnetic, or other mode of orientation, independent of the known senses, does not exist.

The facts above presented constitute the basis of insect psychology. The social insects are especially favorable objects for study on account of their manifold reciprocal relationships. If in speaking of their behavior I use terms borrowed from human life, I request you, once for all, to bear in mind that these are not to be interpreted in an anthropomorphic but in an analogous sense.

1If I expressly refrain from accepting the premature and unjustifiable identification of cell-life with a “machine,” I nevertheless do not share the so-called vitalistic views. It is quite possible that science may sometime be able to produce living protoplasm from inorganic matter. The vital forces have undoubtedly originated from physico-chemical forces. But the ultimate nature of the latter and of the assumed material atoms is, of course, metaphysical, i. e., unknowable.