Za darmo

The Variation of Animals and Plants under Domestication — Volume 2

Tekst
iOSAndroidWindows Phone
Gdzie wysłać link do aplikacji?
Nie zamykaj tego okna, dopóki nie wprowadzisz kodu na urządzeniu mobilnym
Ponów próbęLink został wysłany

Na prośbę właściciela praw autorskich ta książka nie jest dostępna do pobrania jako plik.

Można ją jednak przeczytać w naszych aplikacjach mobilnych (nawet bez połączenia z internetem) oraz online w witrynie LitRes.

Oznacz jako przeczytane
Czcionka:Mniejsze АаWiększe Aa

At the present time in Europe, the smallest peculiarities are carefully attended to in our most useful animals, either from fashion, or as a mark of purity of blood. Many examples could be given; two will suffice. "In the Western counties of England the prejudice against a white pig is nearly as strong as against a black one in Yorkshire." In one of the Berkshire sub- breeds, it is said, "the white should be confined to four white feet, a white spot between the eyes, and a few white hairs behind each shoulder." Mr. Saddler possessed three hundred pigs, every one of which was marked in this manner." (20/69. Sidney's edition of Youatt 1860 pages 24, 25.) Marshall, towards the close of the last century, in speaking of a change in one of the Yorkshire breeds of cattle, says the horns have been considerably modified, as "a clean, small, sharp horn has been FASHIONABLE for the last twenty years." (20/70. 'Rural Economy of Yorkshire' volume 2 page 182.) In a part of Germany the cattle of the Race de Gfoehl are valued for many good qualities, but they must have horns of a particular curvature and tint, so much so that mechanical means are applied if they take a wrong direction; but the inhabitants "consider it of the highest importance that the nostrils of the bull should be flesh-coloured, and the eyelashes light; this is an indispensable condition. A calf with blue nostrils would not be purchased, or purchased at a very low price." (20/71. Moll et Gayot 'Du Boeuf' 1860 page 547.) Therefore let no man say that any point or character is too trifling to be methodically attended to and selected by breeders.

UNCONSCIOUS SELECTION.

By this term I mean, as already more than once explained, the preservation by man of the most valued, and the destruction of the least valued individuals, without any conscious intention on his part of altering the breed. It is difficult to offer direct proofs of the results which follow from this kind of selection; but the indirect evidence is abundant. In fact, except that in the one case man acts intentionally, and in the other unintentionally, there is little difference between methodical and unconscious selection. In both cases man preserves the animals which are most useful or pleasing to him, and destroys or neglects the others. But no doubt a far more rapid result follows from methodical than from unconscious selection. The "roguing" of plants by gardeners, and the destruction by law in Henry VIII.'s reign of all under- sized mares, are instances of a process the reverse of selection in the ordinary sense of the word, but leading to the same general result. The influence of the destruction of individuals having a particular character is well shown by the necessity of killing every lamb with a trace of black about it, in order to keep the flock white; or again, by the effects on the average height of the men of France of the destructive wars of Napoleon, by which many tall men were killed, the short ones being left to be the fathers of families. This at least is the conclusion of some of those who have closely studied the effects of the conscription; and it is certain that since Napoleon's time the standard for the army has been lowered two or three times.

Unconscious selection blends with methodical, so that it is scarcely possible to separate them. When a fancier long ago first happened to notice a pigeon with an unusually short beak, or one with the tail-feathers unusually developed, although he bred from these birds with the distinct intention of propagating the variety, yet he could not have intended to make a short-faced tumbler or a fantail, and was far from knowing that he had made the first step towards this end. If he could have seen the final result, he would have been struck with astonishment, but, from what we know of the habits of fanciers, probably not with admiration. Our English carriers, barbs, and short-faced tumblers have been greatly modified in the same manner, as we may infer both from the historical evidence given in the chapters on the Pigeon, and from the comparison of birds brought from distant countries.

So it has been with dogs; our present fox-hounds differ from the old English hound; our greyhounds have become lighter: the Scotch deer-hound has been modified, and is now rare. Our bulldogs differ from those which were formerly used for baiting bulls. Our pointers and Newfoundlands do not closely resemble any native dog now found in the countries whence they were brought. These changes have been effected partly by crosses; but in every case the result has been governed by the strictest selection. Nevertheless, there is no reason to suppose that man intentionally and methodically made the breeds exactly what they now are. As our horses became fleeter, and the country more cultivated and smoother, fleeter fox-hounds were desired and produced, but probably without any one distinctly foreseeing what they would become. Our pointers and setters, the latter almost certainly descended from large spaniels, have been greatly modified in accordance with fashion and the desire for increased speed. Wolves have become extinct, and so has the wolf-dog; deer have become rarer, bulls are no longer baited, and the corresponding breeds of the dog have answered to the change. But we may feel almost sure that when, for instance, bulls were no longer baited, no man said to himself, I will now breed my dogs of smaller size, and thus create the present race. As circumstances changed, men unconsciously and slowly modified their course of selection.

With racehorses selection for swiftness has been followed methodically, and our horses now easily surpass their progenitors. The increased size and different appearance of the English racehorse led a good observer in India to ask," Could any one in this year of 1856, looking at our racehorses, conceive that they were the result of the union of the Arab horse and the African mare?" (20/72. 'The India Sporting Review' volume 2 page 181; 'The Stud Farm' by Cecil page 58.) This change has, it is probable, been largely effected through unconscious selection, that is, by the general wish to breed as fine horses as possible in each generation, combined with training and high feeding, but without any intention to give to them their present appearance. According to Youatt (20/73. 'The Horse' page 22.), the introduction in Oliver Cromwell's time of three celebrated Eastern stallions speedily affected the English breed; "so that Lord Harleigh, one of the old school, complained that the great horse was fast disappearing." This is an excellent proof how carefully selection must have been attended to; for without such care, all traces of so small an infusion of Eastern blood would soon have been absorbed and lost. Notwithstanding that the climate of England has never been esteemed particularly favourable to the horse, yet long-continued selection, both methodical and unconscious, together with that practised by the Arabs during a still longer and earlier period, has ended in giving us the best breed of horses in the world. Macaulay (20/74. 'History of England' volume 1 page 316.) remarks, "Two men whose authority on such subjects was held in great esteem, the Duke of Newcastle and Sir John Fenwick, pronounced that the meanest hack ever imported from Tangier would produce a finer progeny than could be expected from the best sire of our native breed. They would not readily have believed that a time would come when the princes and nobles of neighbouring lands would be as eager to obtain horses from England as ever the English had been to obtain horses from Barbary."

The London dray-horse, which differs so much in appearance from any natural species, and which from its size has so astonished many Eastern princes, was probably formed by the heaviest and most powerful animals having been selected during many generations in Flanders and England, but without the least intention or expectation of creating a horse such as we now see. If we go back to an early period of history, we behold in the antique Greek statues, as Schaaffhausen has remarked (20/75. 'Ueber Bestandigkeit der Arten.'), a horse equally unlike a race or dray horse, and differing from any existing breed.

The results of unconscious selection, in an early stage, are well shown in the difference between the flocks descended from the same stock, but separately reared by careful breeders. Youatt gives an excellent instance of this fact in the sheep belonging to Messrs. Buckley and Burgess, which "have been purely bred from the original stock of Mr. Bakewell for upwards of fifty years. There is not a suspicion existing in the mind of any one at all acquainted with the subject that the owner of either flock has deviated in any one instance from the pure blood of Mr. Bakewell's flock; yet the difference between the sheep possessed by these two gentlemen is so great, that they have the appearance of being quite different varieties." (20/76. 'Youatt on Sheep' page 315.) I have seen several analogous and well marked cases with pigeons: for instance, I had a family of barbs descended from those long bred by Sir J. Sebright, and another family long bred by another fancier, and the two families plainly differed from each other. Nathusius — and a more competent witness could not be cited — observes that, though the Shorthorns are remarkably uniform in appearance (except in colour), yet the individual character and wishes of each breeder become impressed on his cattle, so that different herds differ slightly from one another. (20/77. 'Ueber Shorthorn Rindvieh' 1857 s. 51.) The Hereford cattle assumed their present well-marked character soon after the year 1769, through careful selection by Mr. Tomkins (20/78. Low 'Domesticated Animals' 1845 page 363.) and the breed has lately split into two strains — one strain having a white face, and differing slightly, it is said (20/79. 'Quarterly Review' 1849 page 392.), in some other points: but there is no reason to believe that this split, the origin of which is unknown, was intentionally made; it may with much more probability be attributed to different breeders having attended to different points. So again, the Berkshire breed of swine in the year 1810 had greatly changed from what it was in 1780; and since 1810 at least two distinct sub-breeds have arisen bearing the same name. (20/80. H. von Nathusius 'Vorstudien...Schweineschadel' 1864 s 140.) Keeping in mind how rapidly all animals increase, and that some must be annually slaughtered and some saved for breeding, then, if the same breeder during a long course of years deliberately settles which shall be saved and which shall be killed, it is almost inevitable that his individual turn of mind will influence the character of his stock, without his having had any intention to modify the breed.

 

Unconscious selection in the strictest sense of the word, that is, the saving of the more useful animals and the neglect or slaughter of the less useful, without any thought of the future, must have gone on occasionally from the remotest period and amongst the most barbarous nations. Savages often suffer from famines, and are sometimes expelled by war from their own homes. In such cases it can hardly be doubted that they would save their most useful animals. When the Fuegians are hard pressed by want, they kill their old women for food rather than their dogs; for, as we were assured, "old women no use — dogs catch otters." The same sound sense would surely lead them to preserve their more useful dogs when still harder pressed by famine. Mr. Oldfield, who has seen so much of the aborigines of Australia, informs me that "they are all very glad to get a European kangaroo dog, and several instances have been known of the father killing his own infant that the mother might suckle the much-prized puppy." Different kinds of dogs would be useful to the Australian for hunting opossums and kangaroos, and to the Fuegian for catching fish and otters; and the occasional preservation in the two countries of the most useful animals would ultimately lead to the formation of two widely distinct breeds.

With plants, from the earliest dawn of civilisation, the best variety which was known would generally have been cultivated at each period and its seeds occasionally sown; so that there will have been some selection from an extremely remote period, but without any prefixed standard of excellence or thought of the future. We at the present day profit by a course of selection occasionally and unconsciously carried on during thousands of years. This is proved in an interesting manner by Oswald Heer's researches on the lake- inhabitants of Switzerland, as given in a former chapter; for he shows that the grain and seed of our present varieties of wheat, barley, oats, peas, beans, lentils, and poppy, exceed in size those which were cultivated in Switzerland during the Neolithic and Bronze periods. These ancient people, during the Neolithic period, possessed also a crab considerably larger than that now growing wild on the Jura. (20/81. See also Dr. Christ in Rutimeyer's 'Pfahlbauten' 1861 s. 226.) The pears described by Pliny were evidently extremely inferior in quality to our present pears. We can realise the effects of long-continued selection and cultivation in another way, for would any one in his senses expect to raise a first-rate apple from the seed of a truly wild crab, or a luscious melting pear from the wild pear? Alphonse de Candolle informs me that he has lately seen on an ancient mosaic at Rome a representation of the melon; and as the Rotnans, who were such gourmands, are silent on this fruit, he infers that the melon has been greatly ameliorated since the classical period.

Coming to later times, Buffon (20/82. The passage is given 'Bull. Soc. d'Acclimat.' 1858 page 11.) on comparing the flowers, fruit, and vegetables which were then cultivated with some excellent drawings made a hundred and fifty years previously, was struck with surprise at the great improvement which had been effected; and remarks that these ancient flowers and vegetables would now be rejected, not only by a florist but by a village gardener. Since the time of Buffon the work of improvement has steadily and rapidly gone on. Every florist who compares our present flowers with those figured in books published not long since, is astonished at the change. A well-known amateur (20/83. 'Journal of Horticulture' 1862 page 394.), in speaking of the varieties of Pelargonium raised by Mr. Garth only twenty-two years before, remarks, "What a rage they excited: surely we had attained perfection, it was said; and now not one of the flowers of those days will be looked at. But none the less is the debt of gratitude which we owe to those who saw what was to be done, and did it." Mr. Paul, the well-known horticulturist, in writing of the same flower (20/84. 'Gardener's Chronicle' 1857 page 85.), says he remembers when young being delighted with the portraits in Sweet's work; "but what are they in point of beauty compared with the Pelargoniums of this day? Here again nature did not advance by leaps; the improvement was gradual, and if we had neglected those very gradual advances, we must have foregone the present grand results." How well this practical horticulturist appreciates and illustrates the gradual and accumulative force of selection! The Dahlia has advanced in beauty in a like manner; the line of improvement being guided by fashion, and by the successive modifications which the flower slowly underwent. (20/85. See Mr. Wildman's address to the Floricult. Soc. in 'Gardener's Chronicle' 1843 page 86.) A steady and gradual change has been noticed in many other flowers: thus an old florist (20/86. 'Journal of Horticulture' October 24, 1865 page 239.), after describing the leading varieties of the Pink which were grown in 1813 adds, "the pinks of those days would now be scarcely grown as border- flowers." The improvement of so many flowers and the number of the varieties which have been raised is all the more striking when we hear that the earliest known flower-garden in Europe, namely at Padua, dates only from the year 1545. (20/87. Prescott 'Hist. of Mexico' volume 2 page 61.)

EFFECTS OF SELECTION, AS SHOWN BY THE PARTS MOST VALUED BY MAN PRESENTING THE GREATEST AMOUNT OF DIFFERENCE.

The power of long-continued selection, whether methodical or unconscious, or both combined, is well shown in a general way, namely, by the comparison of the differences between the varieties of distinct species, which are valued for different parts, such as for the leaves, or stems, or tubers, the seed, or fruit, or flowers. Whatever part man values most, that part will be found to present the greatest amount of difference. With trees cultivated for their fruit, Sageret remarks that the fruit is larger than in the parent-species, whilst with those cultivated for the seed, as with nuts, walnuts, almonds, chestnuts, etc., it is the seed itself which is larger; and he accounts for this fact by the fruit in the one case, and by the seed in the other, having been carefully attended to and selected during many ages. Gallesio has made the same observation. Godron insists on the diversity of the tuber in the potato, of the bulb in the onion, and of the fruit in the melon; and on the close similarity of the other parts in these same plants. (20/88. Sagaret 'Pomologie Physiologique' 1830 page 47; Gallesio 'Teoria della Riproduzione' 1816 page 88; Godron 'De l'Espece' 1859 tome 2 pages 63, 67, 70. In my tenth and eleventh chapters I have given details on the potato; and I can confirm similar remarks with respect to the onion. I have also shown how far Naudin concurs in regard to the varieties of the melon.)

In order to judge how far my own impression on this subject was correct, I cultivated numerous varieties of the same species close to one another. The comparison of the amount of difference between widely different organs is necessarily vague; I will therefore give the results in only a few cases. We have previously seen in the ninth chapter how greatly the varieties of the cabbage differ in their foliage and stems, which are the selected parts, and how closely they resemble one another in their flowers, capsules, and seeds. In seven varieties of the radish, the roots differed greatly in colour and shape, but no difference whatever could be detected in their foliage, flowers, or seeds. Now what a contrast is presented, if we compare the flowers of the varieties of these two plants with those of any species cultivated in our flower-gardens for ornament; or if we compare their seeds with those of the varieties of maize, peas, beans, etc., which are valued and cultivated for their seeds. In the ninth chapter it was shown that the varieties of the pea differ but little except in the tallness of the plant, moderately in the shape of the pod, and greatly in the pea itself, and these are all selected points. The varieties, however, of the Pois sans parchemin differ much more in their pods, and these are eaten and valued. I cultivated twelve varieties of the common bean; one alone, the Dwarf Fan, differed considerably in general appearance; two differed in the colour of their flowers, one being an albino, and the other being wholly instead of partially purple; several differed considerably in the shape and size of the pod, but far more in the bean itself, and this is the valued and selected part. Toker's bean, for instance, is twice-and-a-half as long and broad as the horse-bean, and is much thinner and of a different shape.

The varieties of the gooseberry, as formerly described, differ much in their fruit, but hardly perceptibly in their flowers or organs of vegetation. With the plum, the differences likewise appear to be greater in the fruit than in the flowers or leaves. On the other hand, the seed of the strawberry, which corresponds with the fruit of the plum, differs hardly at all; whilst every one knows how greatly the fruit — that is, the enlarged receptacle — differs in several varieties. In apples, pears, and peaches the flowers and leaves differ considerably, but not, as far as I can judge, in proportion with the fruit. The Chinese double-flowering peaches, on the other hand, show that varieties of this tree have been formed, which differ more in flower than in fruit. If, as is highly probable, the peach is the modified descent of the almond, a surprising amount of change has been effected in the same species, in the fleshy covering of the former and in the kernels of the latter.

When parts stand in close relationship to each other, such as the seed and the fleshy covering of the fruit (whatever its homological nature may be), changes in the one are usually accompanied by modifications in the other, though not necessarily to the same degree. With the plum-tree, for instance, some varieties produce plums which are nearly alike, but include stones extremely dissimilar in shape; whilst conversely other varieties produce dissimilar fruit with barely distinguishable stones; and generally the stones, though they have never been subjected to selection, differ greatly in the several varieties of the plum. In other cases organs which are not manifestly related, through some unknown bond vary together, and are consequently liable, without any intention on man's part, to be simultaneously acted on by selection. Thus the varieties of the stock (Matthiola) have been selected solely for the beauty of their flowers, but the seeds differ greatly in colour and somewhat in size. Varieties of the lettuce have been selected solely on account of their leaves, yet produce seeds which likewise differ in colour. Generally, through the law of correlation, when a variety differs greatly from its fellow-varieties in any one character, it differs to a certain extent in several other characters. I observed this fact when I cultivated together many varieties of the same species, for I used first to make a list of the varieties which differed most from each other in their foliage and manner of growth, afterwards of those that differed most in their flowers, then in their seed-capsules, and lastly in their mature seed; and I found that the same names generally occurred in two, three, or four of the successive lists. Nevertheless the greatest amount of difference between the varieties was always exhibited, as far as I could judge, by that part or organ for which the plant was cultivated.

When we bear in mind that each plant was at first cultivated because useful to man, and that its variation was a subsequent, often a long subsequent, event, we cannot explain the greater amount of diversity in the valuable parts by supposing that species endowed with an especial tendency to vary in any particular manner were originally chosen. We must attribute the result to the variations in these parts having been successively preserved, and thus continually augmented; whilst other variations, excepting such as inevitably appeared through correlation, were neglected and lost. We may therefore infer that most plants might be made, through long-continued selection, to yield races as different from one another in any character as they now are in those parts for which they are valued and cultivated.

 

With animals we see nothing of the same kind; but a sufficient number of species have not been domesticated for a fair comparison. Sheep are valued for their wool, and the wool differs much more in the several races than the hair in cattle. Neither sheep, goats, European cattle, nor pigs are valued for their fleetness or strength; and we do not possess breeds differing in these respects like the racehorse and dray-horse. But fleetness and strength are valued in camels and dogs; and we have with the former the swift dromedary and heavy camel; with the latter the greyhound and mastiff. But dogs are valued even in a higher degree for their mental qualities and senses; and every one knows how greatly the races differ in these respects. On the other hand, where the dog is kept solely to serve for food, as in the Polynesian islands and China, it is described as an extremely stupid animal. (20/89. Godron 'De l'Espece' tome 2 page 27.) Blumenbach remarks that "many dogs, such as the badger-dog, have a build so marked and so appropriate for particular purposes, that I should find it very difficult to persuade myself that this astonishing figure was an accidental consequence of degeneration." (20/90. 'The Anthropological Treatises of Blumenbach' 1856 page 292.) Had Blumenbach reflected on the great principle of selection, he would not have used the term degeneration, and he would not have been astonished that dogs and other animals should become excellently adapted for the service of man.

On the whole we may conclude that whatever part or character is most valued — whether the leaves, stems, tubers, bulbs, flowers, fruit, or seed of plants, or the size, strength, fleetness, hairy covering, or intellect of animals — that character will almost invariably be found to present the greatest amount of difference both in kind and degree. And this result may be safely attributed to man having preserved during a long course of generations the variations which were useful to him, and neglected the others.

I will conclude this chapter by some remarks on an important subject. With animals such as the giraffe, of which the whole structure is admirably co- ordinated for certain purposes, it has been supposed that all the parts must have been simultaneously modified; and it has been argued that, on the principle of natural selection, this is scarcely possible. But in thus arguing, it has been tacitly assumed that the variations must have been abrupt and great. No doubt, if the neck of a ruminant were suddenly to become greatly elongated, the fore limbs and back would have to be simultaneously strengthened and modified; but it cannot be denied that an animal might have its neck, or head, or tongue, or fore-limbs elongated a very little without any corresponding modification in other parts of the body; and animals thus slightly modified would, during a dearth, have a slight advantage, and be enabled to browse on higher twigs, and thus survive. A few mouthfuls more or less every day would make all the difference between life and death. By the repetition of the same process, and by the occasional intercrossing of the survivors, there would be some progress, slow and fluctuating though it would be, towards the admirably coordinated structure of the giraffe. If the short- faced tumbler-pigeon, with its small conical beak, globular head, rounded body, short wings, and small feet — characters which appear all in harmony — had been a natural species, its whole structure would have been viewed as well fitted for its life; but in this case we know that inexperienced breeders are urged to attend to point after point, and not to attempt improving the whole structure at the same time. Look at the greyhound, that perfect image of grace, symmetry, and vigour; no natural species can boast of a more admirably co-ordinated structure, with its tapering head, slim body, deep chest, tucked- up abdomen, rat-like tail, and long muscular limbs, all adapted for extreme fleetness, and for running down weak prey. Now, from what we see of the variability of animals, and from what we know of the method which different men follow in improving their stock — some chiefly attending to one point, others to another point, others again correcting defects by crosses, and so forth — we may feel assured that if we could see the long line of ancestors of a first-rate greyhound up to its wild wolf-like progenitor, we should behold an infinite number of the finest gradations, sometimes in one character and sometimes in another, but all leading towards our present perfect type. By small and doubtful steps such as these, nature, as we may confidently believe, has progressed, on her grand march of improvement and development.

A similar line of reasoning is as applicable to separate organs as to the whole organisation. A writer (20/91. Mr. J.J. Murphy in his opening address to the Belfast Nat. Hist. Soc. as given in the 'Belfast Northern Whig' November 19, 1866. Mr. Murphy here follows the line of argument against my views previously and more cautiously given by the Rev. C. Pritchard, Pres. Royal Astronomical Soc., in his sermon Appendix page 33 preached before the British Association at Nottingham 1866.) has recently maintained that "it is probably no exaggeration to suppose that in order to improve such an organ as the eye at all, it must be improved in ten different ways at once. And the improbability of any complex organ being produced and brought to perfection in any such way is an improbability of the same kind and degree as that of producing a poem or a mathematical demonstration by throwing letters at random on a table." If the eye were abruptly and greatly modified, no doubt many parts would have to be simultaneously altered, in order that the organ should remain serviceable.

But is this the case with smaller changes? There are persons who can see distinctly only in a dull light, and this condition depends, I believe, on the abnormal sensitiveness of the retina, and is known to be inherited. Now if a bird, for instance, receive some great advantage from seeing well in the twilight, all the individuals with the most sensitive retina would succeed best and be the most likely to survive; and why should not all those which happened to have the eye itself a little larger, or the pupil capable of greater dilatation, be likewise preserved, whether or not these modifications were strictly simultaneous? These individuals would subsequently intercross and blend their respective advantages. By such slight successive changes, the eye of a diurnal bird would be brought into the condition of that of an owl, which has often been advanced as an excellent instance of adaptation. Short- sight, which is often inherited, permits a person to see distinctly a minute object at so near a distance that it would be indistinct to ordinary eyes; and here we have a capacity which might be serviceable under certain conditions, abruptly gained. The Fuegians on board the Beagle could certainly see distant objects more distinctly than our sailors with all their long practice; I do not know whether this depends upon sensitiveness or on the power of adjustment in the focus; but this capacity for distant vision might, it is probable, be slightly augmented by successive modifications of either kind. Amphibious animals which are enabled to see both in the water and in the air, require and possess, as M. Plateau has shown (20/92. On the Vision of Fishes and Amphibia, translated in 'Annals and Mag. of Nat. Hist.' volume 18 1866 page 469.), eyes constructed on the following plan: "the cornea is always flat, or at least much flattened in the front of the crystalline and over a space equal to the diameter of that lens, whilst the lateral portions may be much curved." The crystalline is very nearly a sphere, and the humours have nearly the same density as water. Now as a terrestrial animal became more and more aquatic in its habits, very slight changes, first in the curvature of the cornea or crystalline, and then in the density of the humours, or conversely, might successively occur, and would be advantageous to the animal whilst under water, without serious detriment to its power of vision in the air. It is of course impossible to conjecture by what steps the fundamental structure of the eye in the Vertebrata was originally acquired, for we know nothing about this organ in the first progenitors of the class. With respect to the lowest animals in the scale, the transitional states through which the eye at first probably passed, can by the aid of analogy be indicated, as I have attempted to show in my 'Origin of Species.' (20/93. Sixth edition 1872 page 144.)