Za darmo

The Methods and Scope of Genetics

Tekst
0
Recenzje
iOSAndroidWindows Phone
Gdzie wysłać link do aplikacji?
Nie zamykaj tego okna, dopóki nie wprowadzisz kodu na urządzeniu mobilnym
Ponów próbęLink został wysłany

Na prośbę właściciela praw autorskich ta książka nie jest dostępna do pobrania jako plik.

Można ją jednak przeczytać w naszych aplikacjach mobilnych (nawet bez połączenia z internetem) oraz online w witrynie LitRes.

Oznacz jako przeczytane
Czcionka:Mniejsze АаWiększe Aa

The second conception with which we have now to become thoroughly familiar is that of the individual as composed of what we call presences and absences of all the possible ingredients. It is the basis of all progress in genetic analysis. Let me give you two illustrations. A blue eye is due to the absence of a factor which forms pigment on the front of the iris. Two blue-eyed parents therefore, as Hurst has proved, do not have dark-eyed children. The dark eye is due to either a single or double dose of the factor missing from the blue eye. So dark-eyed persons may have families all dark-eyed, or families composed of a mixture of dark and light-eyed children in certain proportions which on the average are definite.

Two plants of Oenothera which I exhibit illustrate the same thing. One of them is the ordinary Lamarckiana. I bend its stem. It will not break, or only breaks with difficulty on account of the tough fibres it contains. The stem of the other, one of de Vries' famous mutations, snaps at once like short pastry, because it does not contain the factor for the formation of the fibres. Such plants may be sister-plants produced by the self-fertilisation of one parent, but they are distinct in their composition and properties – and this distinction turns on the presence or absence of elements which are treated as definite entities when the germ-cells are formed. When we speak of such qualities as the formation of pigment in an eye, or the development of fibres in a stem, as due to transmitted elements or factors, you will perhaps ask if we have formed any notion as to the actual nature of those factors. For my own part as regards that ulterior question I confess to a disposition to hold my fancy on a tight rein. It cannot be very long before we shall know what some of the factors are, and we may leave guessing till then. Meanwhile however there is no harm in admitting that several of them behave much as if they were ferments, and others as if they constructed the substances on which the ferments act. But we must not suppose for a moment that it is the ferment, or the objective substance, which is transmitted. The thing transmitted can only be the power or faculty to produce the ferment or the objective substance.

So far we have been considering the synthesis of the individual from ingredients brought into him by the two gametes. In the next step of our consideration we reverse the process, and examine how the ingredients of which he was originally compounded are distributed among the gametes that are eventually budded off from him.

Take first the case of the components in respect of which he is pure-bred. Expectation would naturally suggest that all the germ-cells formed from him would be alike in respect of those ingredients, and observation shows, except in the rare cases of originating variations, the causation of which is still obscure, that this expectation is correct.

Hitherto though without experimental evidence no one could have been certain that the facts were as I have described them, yet there is nothing altogether contrary to common expectation. But when we proceed to ask how the germ-cells will be constituted in the case of an individual who is cross-bred in some respect, containing that is to say, an ingredient from the one side of his parentage and not from the other, the answer is entirely contrary to all the preconceptions which either science or common sense had formed about heredity. For we find definite experimental proof in nearly all the cases which have been examined, that the germ-cells formed by such individuals do either contain or not contain a representation of the ingredient, just as the original gametes did or did not contain it.

If both parent-gametes brought a certain quality in, then all the daughter gametes have it; if neither brought it in, then none of the daughter gametes have it. If it came in from one side and not from the other, then on an average in half the resulting gametes it will be present and from half it will be absent. This last phenomenon, which is called segregation, constitutes the essence of Mendel's discovery.

So recurring to the simile of the man as made by the mixing of tinctures, the process of redistribution of his characters among the germ-cells may be represented as a sorting back of the tinctures again into a double row of bottles, a pair corresponding to each ingredient; and each of the germ-cells as then made of a drop from one or other bottle of each pair: and in our model we may represent the phenomenon of segregation in a crude way by supposing that the bottles having no tincture in them, instead of being empty contained an inoperative fluid, say water, with which the tincture would not mix. When the new germ-cells are formed, the two fluids instead of diluting each other simply separate again. It is this fact which entitles us to speak of the purity of germ-cells. They are pure in the possession of an ingredient, or in not possessing it; and the ingredients, or factors, as we generally call them, are units because they are so treated in the process of formation of the new gametes and because they come out of the process of segregation in the same condition as they went in at fertilisation.

As a consequence of these facts it follows that however complex may be the origin of two given parents the composition of the offspring they can produce is limited. There is only a limited number of types to be made by the possible recombinations of the parental ingredients, and the relative numbers in which each type will be represented are often predicable by very simple arithmetical rules.

For example, if neither parent possesses a certain factor at all, then none of the offspring will have it. If either parent has two doses of the factor then all the children will have it; and if either parent has one dose of the factor and the other has none, then on an average half the family will have it, and half be without it.

To know whether the parent possesses the factor or not may be difficult for reasons which will presently appear, but often it is quite easy and can be told at once, for there are many factors which cannot be present in the individual without manifesting their presence. I may illustrate the descent of such a factor by the case of a family possessing a peculiar form of night-blindness. The affected individuals marrying with those unaffected have a mixture of affected and unaffected children, but their unaffected children not having the responsible ingredient cannot pass it on1.

In such an observation two things are strikingly exemplified, (1) the fact of the permanence of the unit, and (2) the fact that a mixture of types in the family means that one or other parent is cross-bred in some respect, and is giving off gametes of more than one type.

The problem of heredity is thus a problem primarily analytical. We have to detect and enumerate the factors out of which the bodies of animals and plants are built up, and the laws of their distribution among the germ-cells. All the processes of which I have spoken are accomplished by means of cell-divisions, and in the one cell-union which occurs in fertilisation. If we could watch the factors segregating from each other in cell-division, or even if by microscopic examination we could recognize this multitudinous diversity of composition that must certainly exist among the germ-cells of all ordinary individuals, the work of genetics would be much simpler than it is.

But so far no such direct method of observation has been discovered. In default we are obliged to examine the constitution of the germ-cells by experimental breeding, so contrived that each mating shall test the composition of an individual in one or more chosen respects, and, so to speak, sample its germ-cells by counting the number of each kind of offspring which it can produce. But cumbersome as this method must necessarily be, it enables us to put questions to Nature which never have been put before. She, it has been said, is an unwilling witness. Our questions must be shaped in such a way that the only possible answer is a direct "Yes" or a direct "No." By putting such questions we have received some astonishing answers which go far below the surface. Amazing though they be, they are nevertheless true; for though our witness may prevaricate, she cannot lie. Piecing these answers together, getting one hint from this experiment, and another from that, we begin little by little to reconstruct what is going on in that hidden world of gametes. As we proceed, like our brethren in other sciences, we sometimes receive answers which seem inconsistent or even contradictory. But by degrees a sufficient body of evidence can be attained to show what is the rule and what the exception. My purpose today must be to speak rather of the regular than of the irregular.

 
1The investigation of this remarkable family was made originally by Cunier. The facts have been reexamined and the pedigree much extended by Nettleship. The numerical results are somewhat irregular, but it is especially interesting as being the largest pedigree of human disease or defect yet made. It contains 2121 persons, extending over ten generations. Of these persons, 135 are known to have been night-blind. In no single case was the peculiarity transmitted through an unaffected member. It should be mentioned that for night-blindness such a system of descent is peculiar. More usually it follows the scheme described for colour-blindness. It is not known wherein the peculiarity of this family consists.