Физика. Порядок вещей, или Осознание знаний

Tekst
0
Recenzje
Przeczytaj fragment
Oznacz jako przeczytane
Czcionka:Mniejsze АаWiększe Aa

***

Природа сил инерции в современной физике не установлена, поэтому реальность силы инерции не может противоречить современной физике в принципе. Единственным критерием реальности силы инерции может служить только ее соответствие или не соответствие фундаментальным законам природы, которым, как показано выше, явление инерции полностью соответствует. Более того инерция непосредственно обусловлена фундаментальными законами природы, как собственно и законы природы обусловлены инерцией.

Врождённое элементарное свойство материи преобразование напряжение-движение не может быть пока объяснено современной физикой именно потому, что оно элементарное и в физике нет ничего боле элементарного, что можно положить в структуру этого свойства для его объяснения. Однако отрицание мировой материальной среды, сопротивление которой, так же определяет явление инерции, причем, по-видимому, количественно в значительно большей степени, чем врождённое свойство материи преобразование напряжение-движение, приводит к полному абсурду в классической физике.

Современная физика утверждает, что сила инерции всегда приложена только к опорному телу, т.е. источнику активного движения или к ускоряющему телу. Однако это все равно, что сопротивление изменению состояния движения ускоряемого тела со стороны среды оказывается не ему, а непосредственно источнику силы, минуя само ускоряемое тело. Это равносильно тому, что ускоряется одно тело, а сопротивление его ускорению оказывается совсем другому телу – источнику силы! Такое толкование природы взаимодействий противоречит даже общепризнанным на сегодняшний день законам физики и в частности третьему закону Ньютона.

Ни одно физическое тело не может воздействовать на другое тело, не испытывая, как минимум такого же силового противодействия на себе. Поэтому даже если источник противодействия изменению состояния движения физических тел на сегодняшний день наукой не установлен, это противодействие в соответствии с той же самой наукой в первую очередь должно оказываться именно ускоряемому телу, а уже через него противодействие может быть передано ускоряющему, т.е. опорному телу. Это справедливо для взаимодействия тел даже в отсутствие мировой материальной среды. Может быть, именно в этом смысле следует понимать слова Ньютона о том, что инерция это «врожденная сила материи».

По мнению В. А. Ацюковского («Общая эфиродинамика», МОСКВА, ЭНЕРГОАТОМИЗДАТ, 1990) все мировое пространство и промежутки между элементарными частицами любого вещества заполняет мировая материальная среда – эфир, которая представляет собой сильно разреженный реальный газ. Мельчайшие частицы этого газа – амеры и являются первокирпичиками материи, т.е., по—видимому, и элементарными носителями массы.

По Ацюковскому силы гравитации определяются термодиффузионными процессами в эфире, основанными на теплообмене массы вещества с окружающим эфиром. Эфир в составе вещества является более холодным по сравнению со свободным эфиром. Он охлаждает свободный эфир между тяготеющими телами сильнее, чем, с внешней стороны тел. При этом возникает градиент давления, под действием которого материальные тела устремляются в область пониженного давления более охлаждённого эфира между ними. Причем градиент давления мировой материальной среды тем больше, чем больше количество вещества в теле.

Инерция, обеспечиваемая средой также, по-видимому, основана на обмене энергией между веществом и мировой материальной средой. При взаимодействии материальных тел в зоне деформации происходит нагрев окружающего эфира. При этом взаимодействующие тела устремляются в сторону внешнего более холодного эфира. Причём оба взаимодействующих тела в любом случае испытывают сопротивление движению со стороны более холодного эфира открытого пространства (с учётом паруса взаимодействия).

Конечно же, это только предположение. Механизм распределения энергии в материи может быть уточнен по мере накопления соответствующих знаний в науке. Однако совершенно очевидно, что без врождённого свойства преобразования напряжение-движение и без инерционного сопротивления среды никакие силы взаимодействия не смогут распространяться на материальные тела. Сила инерционного сопротивления мировой материальной среды непосредственно воздействует на ускоряемое тело, а уже через него на опорное ускоряющее тело. То есть сила, действующая на опорное тело, в конечном итоге является продолжением силы инерции. Без среды – это инерция поэлементной поддержки, только и всего.

Иллюзию нереальности силам инерции придает только существующая на сегодняшний день математическая модель, которая, кстати, призвана облегчить решение задач динамики, а не усложнять понимание физической сущности реальных взаимодействий, хотя сегодня получается почему-то все наоборот. Некоторые физики от математики склонны принимать существующую математическую модель теории движения «за чистую монету» и распространяют абстрактные математические допущения на реальную действительность.

Причем Даламбер в этом нисколько не виноват. Виноваты, наверное, «неграмотные люди», как говорит Н. В. Гулиа в своей «Удивительной физике», в том числе, видимо, и сам Гулиа. По поводу вводимого в физику для облегчения решения задач движения принципа Даламбера, Гулиа пишет:

«он же (Даламбер – авт.) не подозревал, что в научном мире еще имеются люди не очень образованные» (см. выше).

Н. В. Гулиа считает, что инерция связана только с принципом Даламбера и не имеет под собой никакой физической основы. Интересно как грамотный вроде бы человек Гулиа вообще представляет себе силу тяги в отсутствие силы инерции?! Тот же самый автомобиль с двигателем любой мощности никуда не уедет на скользком льду вовсе не, потому что отсутствуют силы трения.

Это, конечно важно, но это только второстепенная причина, являющаяся следствием основной причины, т.к. силы трения в данном случае играют лишь роль посредника между взаимодействующими телами. У спортсмена, бегущего на тренажере «Беговая дорожка» с силой трения ног по отношению к полотну дорожки все в полном порядке. Однако все усилия спортсмена не приводят к его сколько-нибудь заметному перемещению относительно Земли, на которой стоит спортивный снаряд.

Силы трения это только промежуточное звено во взаимодействии автомобиля с Землей, отсутствие которой лишает автомобиль возможности взаимодействовать с инерцией Земли. Точно так же как мешает спортсмену взаимодействовать с инерцией Земли спортивный снаряд «Беговая дорожка». Для создания силы тяги необходимо в первую очередь инерционное сопротивление опорного тела, которого из-за отсутствия сцепления со скользкой дорогой лишается автомобиль и из-за свободного перемещения полотна дорожки на барабанах спортивного снаряда лишается спортсмен.

***

Что же является на сегодняшний день «ясным» определением силы инерции в современной физике, о котором говорит Зоммерфельд? Выше в главе 1.1 приведены мнения классиков теоретической механики, в которых ясно прослеживается лишь их двойственное отношение к явлению инерции. Причём причина двойственного отношения к силам инерции в классической физике состоит ещё и в том, что все материальные тела рассматриваются в ней, как материальные точки.

Если разбить физические тела на отдельные элементы, хотя бы в виде его реальных физических структур, то явление инерции частично можно объяснить и обычными внутренними Ньютоновскими силами. Они не только передают движение ускоряемому телу, но и собственно поддерживают это движение при встрече ускоряемого тела с препятствиями. На двоякое проявление силы инерции указывал еще Ньютон. Он говорил, что сила инерции проявляется как сопротивление и как напор:

«Как сопротивление, – поскольку тело противится действующей на него силе, стремясь сохранить свое состояние; как напор, – поскольку то же тело, с трудом уступая силе сопротивляющегося ему препятствия, стремится изменить состояние этого препятствия».

Таким образом, Ньютон по сути дела допускал, что силой инерции может быть «обычная» сила, с которой одно тело передает свое движение другому телу и одновременно поддерживает собственное движение. Ведь «стремится изменить состояние этого препятствия» невозможно без стремления поддержать собственное состояние движения. Особенно если учесть, что тело это не материальная точка, а сложная материальная структура.

Как показано выше, сила инерции это скалярное напряжение (F = m * a), которое возникает при любом препятствии движению, и которое тут же исчезает при устранении этого препятствия посредством преобразования напряжения-силы (F = m * a) в новое движение. Так образуется инерционное движение. При этом внутренние Ньютоновские силы поэлементной инерции осуществляют этот принцип на уровне структур вещества и физических тел, а истинные врождённые силы инерции реализуют его на уровне элементарных носителей массы вещества и мировой материальной среды.

Понятие инерции в механическом движении является полным аналогом явлению самоиндукции в электродинамике, которое, по всей видимости, как раз и осуществляется на уровне элементарных масс. Правда, самоиндукция объясняется в классической физике через взаимодействие электронов с электромагнитным полем. Но это уже гораздо ближе к взаимодействию элементарных носителей масс, чем взаимодействие физических тел между собой в виде неделимых материальных точек.

Что же касается точек приложения физически реальных сил, как внутренних Ньютоновских, так и внешних сил инерции, то они, как мы уже отмечали, приложены, прежде всего, к структурным элементам вещества или к элементарным носителям массы каждого из взаимодействующих тел. Поэтому в каждом конкретном случае точка приложения сил может меняться в зависимости от решаемой задачи.

Сосредоточение сил в конкретной материальной точке, как в ЦМ физического тела это только частный случай всех возможных вариантов взаимодействий. Если бы классическая физика рассматривала кинематику движения физических тел не только как движение единых и неделимых материальных точек, то в динамике мы сегодня наверняка уже имели бы более реалистичные представления о явлении инерции.

 

***

В этом отношении интересен пример равномерного вращения массивного цилиндрического стержня на его поперечной оси. Вращающийся стержень представляет собой единое физическое тело, которое растянуто за счет сил инерции, реально поддерживающих прямолинейное движение по касательной всех его элементарных носителей массы. Сила упругости возникает лишь как ответная реакция на реальное внешнее воздействие поддерживающих центробежных сил инерции.

Причём реальная сила упругости не может противодействовать фиктивным несуществующим силам, как впрочем, и сама упругая деформация не может возникнуть под действием фиктивных несуществующих сил. Прежде чем должна появиться сила упругости, стержень должен быть предварительно растянут вовсе не фиктивными силами.

В реальности центробежных сил инерции легко убедиться, представив вращение цилиндра в виде упрощенной академической эквивалентной схемы. На любом расстоянии по обе стороны от центра вращения стержня, кроме максимального радиуса стержня можно условно математически выделить элементарный объем, на который действуют внешние и внутренние силы:

1. С внешней стороны на элементарный объем действует совершенно «обычная» даже с классической точки зрения сила внешней части стержня, которая для самой внешней части стержня, как это ни парадоксально, с классической точки зрения является фиктивной, т.е. несуществующей силой! Однако если иметь в виду силы инерции поэлементной поддержки, то эта сила является реальной и для внешней части стержня.

2. С внутренней стороны на элементарный объем действует динамически уравновешивающая поддерживающую силу инерции «обычная» сила упругости внутренней части стержня, которая фактически является продолжением обычной поддерживающей силы инерции диаметрально противоположной внешней части стержня, соответствующей внешней части стержня по первому пункту.

Совершенно очевидно, что при равномерном вращении диаметрально противоположные части стержня находятся в состоянии равновесия относительно друг друга и относительно центра вращения, т.к. средняя длина стержня остается неизменной. Следовательно, внутреннюю часть стержня можно теоретически условно заменить академическим невесомым упругим связующим телом, а внешние части стержня считать самостоятельными массивными физическими телами. Из полученной эквивалентной схемы следует, что, каждое из этих массивных физических тел (внешние части стержня) через силу упругости воздействует друг на друга с обычной поддерживающей центробежной силой инерции.

Таким образом, во вращательном движении центростремительная сила упругости обеспечивается фактически «обычной» поддерживающей силой инерции, как ни парадоксально с классической точки зрения это определение по отношению к фиктивной силе инерции.

Поскольку «фиктивная» с классической точки зрения поддерживающая сила инерции реально уравновешивается «обычной» силой упругости связующего тела, то обе силы вполне реальны. Классическая же модель вращательного движения отрицает какое-либо равновесие центростремительной силы упругости и центробежной силы инерции, считая последнюю силу несуществующей фиктивной силой инерции.

Однако сила упругости связующего тела противодействует вовсе не только силе инерции массы покоя вращающегося тела, которую в классической физике принято считать фиктивной, но и его прямому «ударному», воздействию на любой рассматриваемый участок связующего тела, которое сложно считать фиктивным. Приложена «обычная» поддерживающая сила инерции к диаметрально противоположному вращающемуся телу или закрепленному центру. Однако не следует забывать, что центробежная сила инерции приложена также и к каждому элементарному носителю массы самого вращающегося тела.

Если связующее тело считать реальным физическим телом, а не академической невесомой упругой связкой, то поддерживающая сила инерции приложена, в том числе и к каждому элементарному носителю массы связующего тела, являющегося частью единого тела стержня, что и утверждает классическая физика. Однако, поскольку в данном случае связующее тело неотделимо от вращающегося тела, то совершенно очевидно, что поддерживающая сила инерции оказывает вполне реальное действие и на вращающееся тело, ответное связующему телу.

Совершенно очевидно, что при, увеличении скорости вращения, а значит и линейной скорости движения тела по окружности растет не «фиктивная» сила инерции неподвижного с классической точки зрения в радиальном направлении тела. Рост центробежной силы обусловлен, прежде всего «обычной» поддерживающей силой инерции, с которой тело, стремясь в первоначальный момент преобразования прямолинейного движения во вращательное движение удалиться от центра вращения, ударно воздействует на связующее тело.

Именно кинетическая энергия прямолинейного движения тела при преобразовании его во вращательное движение энергетически обеспечивает центробежную силу инерции, т.е. «обычную» по сути дела силу, с которой движущееся прямолинейно тело, сопротивляется процессу преобразования движения по направлению. Каждому увеличению линейной скорости прямолинейного движения, которое преобразуется во вращательное движение, неизменно сопутствует увеличение центростремительного ускорения.

Причем сначала должна увеличиться именно скорость прямолинейного движения тела и, только потом в процессе дополнительного удлинения связующего тела и роста силы упругости возникает и новое центростремительное ускорение нового вращательного движения. Без дополнительного удлинения связующего тела, в результате которого в свою очередь и обеспечивается рост силы упругости невозможно физически обосновать рост центростремительного ускорения.

Таким образом, именно кинетическая энергия прямолинейного движения тела, преобразуемого во вращательное движение, питает «фиктивную» с точки зрения классической физики и «обычную» по своей физической сущности центробежную силу инерции, а так же силу упругости связующего тела. А поскольку кинетическая энергия величина вовсе не фиктивная, хотя и абстрактно-академическая, то и центробежная сила, которая передаёт эту величину, не может быть фиктивной. И приложена эта сила, в том числе и к каждому элементу вращающегося тела.

***

Выше мы рассмотрели физический механизм формирования сил с участием сил инерции при взаимодействии тел вдоль одной прямой линии. При таких взаимодействиях силы инерции влияют на формирование абсолютной величины сил, действующих на взаимодействующие тела. Теперь рассмотрим формирование сил взаимодействия, при котором силы инерции, поддерживающие движение направлены под углом к «обычным» силам, действующим на тело. Такие взаимодействия происходят в частности во вращательном движении.

Пусть тело (Т1) (Рис. 1.2.6), движущееся со скоростью V1 захватывается резиновой нитью с одним закрепленным концом, которая действует на него с силой упругости (Fу1). С классической точки зрения тело испытывает только воздействие силы упругости резиновой нити, направленной вдоль ее оси к центру вращения. Однако сила упругости не может возникнуть на пустом месте. По третьему закону Ньютона сила упругости резиновой нити может возникнуть только как реакция на силовое воздействие тела (Т1) на точку закрепления нити (О) через саму нить, т.е. предварительно должно произойти удлинение нити под действием удаляющегося от точки закрепления нити тела (Т1).

Таким образом, сила инерции во вращательном движении первична, что несколько отличается от позиции классической физики, в которой центробежная сила является фиктивной.

Рис. 1.2.6


Удаляясь от точки (О), тело захватывает свободный конец нити и растягивает ее именно за счет сил инерции своего движения. Ведь не неподвижная же точка (О) растягивает нить! Классическая физика косвенно признает реальность сил инерции. Правда она считает, что силы растягивающие нить приложены не к телу, а к нити (выше мы уже разбирали противоречия такой трактовки действия силы инерции).

Учитывая приведенный выше механизм формирования поддерживающей силы инерции, ее зарождение происходит внутри физического тела и распространяется по всему его объему и только после этого передается на внешние тела. Следовательно, для возникновения полной силы инерции предварительно должны быть задействованы внутренние упругие связи самого тела (Т1), т.е. упругая связь между его элементами должна быть предварительно деформирована, и только после этого можно говорить о выходе силы инерции за пределы тела и ее воздействии на ответные тела.

Пусть тело (Т1) для простоты состоит всего лишь из двух элементарных масс (Э1) и (Э2). В первый момент после захвата тела резиновой нитью ее сила упругости формируется, прежде всего, с учетом инерции движения первого элемента тела (Т1), т.е. инерции элемента (Э1). Поэтому на первом этапе после первичного формирования силы упругости (Fу1) для ее «готового» варианта можно исключить из расчета только ответную реакцию на силу (Fэ1) элемента (Э1), захваченного резиновой нитью.

Однако элементарная масса (Э2) некоторое время продолжает условно в некотором приближении двигаться по инерции, удаляясь от элемента (Э1). При этом по мере нарастания внутренней силы упругости на дальнейшем движении тела начнет сказываться влияние элемента (Э2), который через внутреннюю упругую связь воздействует, в том числе и прежде всего на элемент (Э1) с силой (Fэ2).

Под действием силы (Fэ2) элемента (Э2) и силы упругости (Fу1) формируется результирующая сила (Fрез), которая отклонит тело (Т1) от первоначального прямолинейного движения в сторону центра вращения, однако при этом тело (Т1) еще больше удалится от центра вращения, а скорость его движения естественно замедлится, т.к. часть инерции (кинетической энергии) тела будет израсходована на преодоление силы упругости нити.

Однако, как известно равномерное движение по окружности предполагает движение с постоянной линейной скоростью. Таким образом, для формирования равномерного вращательного движения необходимо, чтобы механизм преобразования движения по направлению обеспечивал не только изменение линейной скорости по направлению, но и ее восстановление по абсолютной величине после каждого изменения направления.

Совершенно очевидно, что восстановить уменьшившуюся на первом этапе скорость может только энергия, запасенная в нити, которая может вновь перейти в кинетическую энергию тела только при ее сокращении. Для этого результирующая сила должна непрерывно изменять свое направление до тех пор, пока ее проекция на радиальное направление не станет положительной по отношению к центру вращения.

Только после этого тело под действием силы упругости нити начнет ускоренно двигаться к центру вращения. Однако после достижения увеличивающейся линейной скорости некоторого значения весь процесс опять должен поменять направление по отношению к центру вращения, иначе линейная скорость может превысить даже свое первоначально установившееся после образования упругой деформации связующего тела значение.

Таким образом, движение по окружности предполагает циклически повторяющийся процесс взаимодействия сил упругости и сил инерции, в котором происходит изменение вектора линейной скорости, как по величине, так и по направлению. Более детально примерный физический механизм преобразования движения по направлению будет рассмотрен ниже в главе 3.4. Задачей же настоящего раздела является обоснование реальности сил инерции, в том числе и во вращательном движении и их роли в формировании любых сил в принципе.

В предложенном механизме образования центробежной силы нет никаких парадоксов и противоречий даже с классической точки зрения. Классическая физика признает, что фиктивная центробежная сила вполне реально проявляется, правда только при воздействии на связующее тело. Однако первоначально вступивший во взаимодействие элемент тела (Э1) принципиально также является связующим звеном элемента (Э2) с центром вращения, т.е. сила инерции, действует, в том числе и на тело. В то же время взаимодействие между элементами тела осуществляется внутри тела, т.е. сила инерции зарождается, прежде всего, внутри тела и только распространившись по всему его объему, выходит за его пределы.

При этом нет никаких противоречий и в отношении точки приложения сил инерции. На рисунке 1.2.6 показана упрощенная, т.е. условная принципиальная схема взаимодействия. Чтобы не загромождать рисунок, центр элементарной массы (Э2) не показан вообще. При этом вполне естественно, что взаимодействие следует рассматривать в совокупности участия в нем всех элементов тела, т.к. сила упругости связующего тела, а также внутренняя сила упругости в конечном итоге последовательно распространяется на все элементарные носители массы тела. Естественно, что положение точки приложения сил, а также величина и направление полной результирующей силы в процессе развития взаимодействия в предлагаемом масштабе будут изменяться.

 

На рисунке не показана схема разгона тела при ориентации результирующей силы в положительном радиальном направлении по отношению к центру вращения (положение V4). Однако в этом нет особой необходимости, т.к. разгон тела происходит под действием «обычной» силы упругости и не связан с какими-либо противоречиями, кроме самого его существования в равномерном вращательном движении. При обратном движении тела к центру вращения сила инерции будет противодействовать разгону по аналогичной, но реверсивной схеме, в которой сила инерции и сила упругости только поменяются ролями.

Правомерно ли такое представление о реальном влиянии силы инерции на формирование вращательного движения? В реальном физическом теле содержится огромное количество структурных элементов. В предложенной схеме (Рис.1.2.6) все взаимодействия за исключением первого происходят под действием вполне «обычных» сил. Однако если реально смотреть на вещи, первый элемент также осуществляет свое воздействие на связующее тело не «по щучьему велению», а только передает ему силу инерции, формирующуюся из кинетической энергии (из движения) самого тела.

Следует полагать, что силы инерции вполне реальны, хотя субъективно они не всегда обнаруживаются. Во всяком случае, кажущаяся фиктивность силы инерции по отношению к первому элементу это не самое слабое звено в предложенной схеме. Из всего несметного количества элементарных масс в реальном физическом теле это составляет ничтожно малый процент фиктивности, т.к. все остальные элементы воздействуют на связующее тело уже через элементы самого тела через вполне реальную обычную силу. А это означает, что сила инерции приложена, прежде всего, к самому телу.

Масса (Э2) в упрощенной схеме или каждая последующая масса в реальном физическом теле некоторое время условно движется равномерно и прямолинейно по инерции, т.е. в отсутствие внешних сил. Однако эта условность допущена схематично для упрощения понимания предложенного механизма. В реальной действительности силовое взаимодействие между элементарными массами естественно происходит непрерывно, хотя и с разной интенсивностью, что позволяет в некотором приближении условно говорить о движении по инерции на определённых этапах. А вот в классической модели линейная скорость и сила упругости остаются статически неизменными по абсолютной величине, что физически в принципе невозможно при реальных взаимодействиях с непрерывной сменой направления.

С точки зрения классической физики под действием классического центростремительного ускорения должно изменяться только направление линейной скорости. Однако физический механизм изменения линейной скорости без изменения ее величины в классической физике не представлен. Мы полагаем, что такого механизма в природе просто не существует, т.к. он противоречит всем физическим законам и здравому смыслу.

Во всяком случае, существование такого механизма представляется нисколько не менее противоречивым, чем механизм описанный выше. Нам представляется, что сегодня это понимают уже достаточно большое количество здравомыслящих людей. Однако официально многие из них поддерживают классическую точку зрения. Автору довелось в этом доподлинно убедиться на физическом форуме dxdy от МГУ.

Под действием классического центростремительного ускорения тело рано или поздно должно неминуемо столкнуться с центром вращения, причем с нарастающей по абсолютной величине скоростью. Это совершенно очевидное логическое следствие движения с центростремительным ускорением в отсутствие реального противодействия фиктивной силы инерции. Поэтому классическая физика придумала несуразную и очень вредную для науки сказку о том, что под действием центростремительной силы изменяется только направление линейной скорости, а центростремительное ускорение при этом, не приводит ни к какому реальному пространственному перемещению.

To koniec darmowego fragmentu. Czy chcesz czytać dalej?