Ключевые идеи книги: Как лгать при помощи статистики. Дарелл Хафф

Tekst
0
Recenzje
Przeczytaj fragment
Oznacz jako przeczytane
Jak czytać książkę po zakupie
Nie masz czasu na czytanie?
Posłuchaj fragmentu
Ключевые идеи книги: Как лгать при помощи статистики. Дарелл Хафф
Ключевые идеи книги: Как лгать при помощи статистики. Дарелл Хафф
− 20%
Otrzymaj 20% rabat na e-booki i audiobooki
Kup zestaw za 45,48  36,38 
Как лгать при помощи статистики
Tekst
Как лгать при помощи статистики
E-book
26,81 
Szczegóły
Ключевые идеи книги: Как лгать при помощи статистики. Дарелл Хафф
Ключевые идеи книги: Как лгать при помощи статистики. Дарелл Хафф
Audiobook
Czyta Татьяна Маерс
22,74 
Szczegóły
Audio
Как лгать при помощи статистики
Audiobook
Czyta Андрей Барабанщиков
27,63 
Szczegóły
Ключевые идеи книги: Как лгать при помощи статистики. Дарелл Хафф
Czcionka:Mniejsze АаWiększe Aa

Оригинальное название:

How To Lie With Statistics

Автор:

Darrell Huff

Тема:

Обязательное чтение

Правовую поддержку обеспечивает юридическая фирма AllMediaLaw

www.allmedialaw.ru

Введение

Книга Даррелла Хаффа «Как лгать при помощи статистики» впервые вышла в 1954 году. С тех пор наука существенно продвинулась вперед. Однако «большие данные» и вычислительные машины мало что изменили в отношениях рядового клиента – избирателя, потребителя, человека, пытающегося выбрать безопасные продукты, эффективные лекарства, ответственное правительство – с теми цифрами, которые, словно кролика из шляпы, вынимают перед ним СМИ, пиарщики и политики. Мы каждый раз и поддаемся убедительности цифр (это ведь не слова, «цифры не лгут»), и боимся попасться, и попадаемся, конечно же – пока не прочтем эту книгу.

Даррелл Хафф не просто разоблачает манипуляции с цифрами: он выбрал самый увлекательный для читателя способ повествования: предлагает нам поиграть за обе стороны, выступить и в роли клиента, которого пытаются одурачить, и в роли хитроумного обманщика. Мы сами щупаем каждый кейс, прикидываем, как бы половчее подать информацию и, вроде не соврав в цифрах, придать заурядному товару привлекательность или создать иллюзию, будто за нашего кандидата голосуют «все». В итоге мы выясняем, как делается фокус, где прячутся веревочки и куда смотреть, какие задавать вопросы, чтобы с нами этот номер не прошел.

Такое сочетание наглядности и увлекательности, даже азарта – лучшее объяснение, почему книга Даррелла Хаффа продолжает переиздаваться, покупаться (миллионными тиражами, но это тоже «статистика»), переводиться: несколько лет назад – на русский язык, а в этом году и на китайский.

Автор предисловия к русскому изданию справедливо замечает, что знакомство с основами статистики необходимо любому человеку, в том числе гуманитарию, считающему, что он не разбирается в цифрах. Разбирается или не разбирается, но с цифрами мы сталкиваемся ежедневно – в газетных статьях о росте преступности или промышленности, в рекламных брошюрах, обещающих «эффективность больше на 26 %», в брошюрах медицинских, доказывающих «снижение риска заболеваемости на 31 %», в школе, где нам сообщают, что ребенок попал в такой-то процентиль. Человек, не способный задать нужные вопросы и выяснить, насколько точна и значима эта статистика, беспомощен.

И давно пора пересмотреть представление о статистике как о специальной дисциплине, доступной лишь людям с математическим складом ума. Да, статистика состоит из цифр, но эти цифры описывают то, что нам всего ближе – поведение человека и его отношение к ключевым проблемам жизни.

1. Выкрутасы выборки

1.1. Чаще всего статистические выводы делаются на основании выборки: сведения, полученные о представителях некой группы, экстраполируются на всю группу, а потому ошибки или намеренное искажение статистики начинаются с неверной выборки. Прежде всего выборка может быть слишком мала.

Нам известно, что в мешке лежит тысяча шариков разных цветов. Вынимаем пять шариков, видим 3 белых, 1 синий и 1 красный и делаем вывод: в мешке 60 % белых шариков, 20 % синих и 20 % красных. На самом деле доля белых шариков намного ниже, а из 100 зеленых нам не попалось ни одного. Чтобы судить о содержимом мешка, нужно взять гораздо больше шариков (например 50). Ошибки все равно возможны, но вероятность их существенно снижается.

1.2. В идеале выборка должна быть совершенно произвольной, чтобы все элементы изучаемой группы имели равные шансы попасть в нее. Однако такое возможно лишь для одинаковых элементов (шариков), а в реальной жизни довольствуются стратифицированной выборкой, представляющей все слои населения и ситуации.

Если нужно узнать, как повысились цены на продовольственные товары по сравнению с прошлым годом, в выборке должны быть пропорционально представлены торговые сети, крупные магазины, лавочки и рынки больших, средних и малых городов, сел и труднодоступных мест всех регионов страны. Пропорционально должны быть представлены и продукты: нельзя судить об изменениях в стоимости продовольственной корзины по небольшой группе товаров нишевого потребления.

1.3. Один из основных видов выборки, результаты которого чаще всего ложатся в основу популярных социальных исследований, прогнозов и рекламы – опрос. При этом возможны такие «выкрутасы выборки»:

• Опрос небольшого и потому нерепрезентативного числа людей.

Обычное явление в тележурналистике: репортер передает микрофон трем— пяти прохожим, и у зрителя складывается ощущение, будто «все жители города» думают именно так.

• В выборке неравномерно представлены различные группы людей.

Например, требуется выяснить мнение студентов о готовящейся реформе образования. Чтобы далеко не ходить, опрашивающий ограничивается студентами из своего города или привлекает к опросу молодежь из знакомых семей.

Одна из типичных ошибок – сдвиг в сторону благополучных людей.

To koniec darmowego fragmentu. Czy chcesz czytać dalej?