Czytaj książkę: «Операции над матрицами средствами MS Excel»
© Николай Петрович Морозов, 2024
ISBN 978-5-0064-6046-1
Создано в интеллектуальной издательской системе Ridero
Этой книгой я продолжаю курс практических занятий по Линейной алгебре, которые я проводил со студентами университета культуры и искусств в городе Санкт – Петербурге. но уже с широким применением приложения MS Ofice Excel.
1.Определители матрицы
1.1.Определители 2-го порядка
Пусть дана квадратная таблица из следующих чисел:
![](http://litres.ru/pub/t/71140273.json/image0_66e2a9d0e6a7b3a82df35efb_jpg.jpeg)
Матрица A
Число A = а11∙а22 – а12∙а21 называется определителем 2-го порядка и соответствует приведенной выше матрице Этот определитель обозначается символом det A и вычисляется по следующему правилу:
![](http://litres.ru/pub/t/71140273.json/image1_66e2a9cde6a7b3a82df35ef5_jpg.jpeg)
Правило вычисления определителя второго порядка.
Числа а11,а22, а12,а21 являются элементами определителя. Говорят, что элементы а11,а22 лежат на главной диагонали определителя, а а12,а21 – на побочной.
Таким образом определитель 2-го порядка равен разности между произведениями элементов, лежащих на главной и побочной диагоналях.
1.2.Определители 3-го порядка
Рассмотрим таблицу из 9-ти элементов:
![](http://litres.ru/pub/t/71140273.json/image2_66e2a9c9e6a7b3a82df35eec_jpg.jpeg)
Определитель 3-го порядка.
Определителем 3-го порядка, соответствующим зтой таблице, называется число, равное:
а11∙а22∙а33 + а21∙а23∙а31 + а21∙а32∙а13 – а13∙а22∙а31 – а11∙а32∙а23 – а21∙а12∙а33
Этот определитель обозначается символом det:
При вычислении определителя 3-го порядка удобно пользоваться правилом треугольника (правилом Саррюса):
1.3.Свойства определителей
1) Равноправность строк и столбцов: определитель не изменится, если его строки заменить столбцами или наоборот.
![](http://litres.ru/pub/t/71140273.json/image3_66e2a9c5e6a7b3a82df35ee3_jpg.jpeg)
Первое свойство определителя (2-го порядка).
![](http://litres.ru/pub/t/71140273.json/image4_66e2a9c4e6a7b3a82df35ee0_jpg.jpeg)
Первое свойство определителя (3-го порядка).
2) При перестановке двух параллельных рядов, определитель меняет знак.
![](http://litres.ru/pub/t/71140273.json/image5_66e2a9c3e6a7b3a82df35edd_jpg.jpeg)
Второе свойство определителя (3-го порядка).
3) Определитель, имеющий два одинаковых ряда, равен 0
![](http://litres.ru/pub/t/71140273.json/image6_66e2a9c1e6a7b3a82df35eda_jpg.jpeg)
Третье свойство определителя (3-го порядка).
4) Общий множитель элементов какого-либо ряда определителя можно выносить за знак определителя.
![](http://litres.ru/pub/t/71140273.json/image7_66e2a9c0e6a7b3a82df35ed7_jpg.jpeg)
Четвертое свойство определителя (3-го порядка).
Из свойств 3 и 4 следует, что если все элементы некоторого ряда пропорциональны соответствующим элементам параллельного ряда, то такой определитель равен 0
![](http://litres.ru/pub/t/71140273.json/image8_66e2a9bfe6a7b3a82df35ed4_jpg.jpeg)
Следствие из свойств 3 и 4.
5) Если элементы какого-либо ряда определителя представляют собой суммы двух слагаемых, то определитель может быть разложен на сумму двух соответствующих определителей.
Darmowy fragment się skończył.