Czytaj książkę: «Солнечное вещество (сборник)»

Czcionka:

За предоставленные материалы издательство РИМИС выражает глубокую признательность Андриановым Александру Андреевичу и Владимиру Андреевичу (Санкт-Петербургский государственный университет).

© Издательство РИМИС, составление, оформление, 2013

Все права защищены. Никакая часть электронной версии этой книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для частного и публичного использования без письменного разрешения владельца авторских прав.

* * *

Солнечное вещество

С чего началось

Я расскажу о веществе, которое люди нашли сначала на Солнце, а потом уже у себя на Земле.

Астрономы изучают поверхность Солнца с тех пор, как у них есть телескоп. Они видят на Солнце темные пятна, огненные облака, извержения и взрывы. Но разве можно разглядеть в телескоп химический состав Солнца, исследовать, из каких веществ оно состоит? Для этого химикам пришлось бы побывать на Солнце, захватив с собой свои пробирки, колбы, реактивы и весы.

Какая же это экспедиция пролетела полтораста миллионов километров и открыла на Солнце новое вещество?

Такой экспедиции никогда не было. Не отрываясь от своей планеты, люди ухитрились узнать, из чего состоит Солнце. Узнали это они не очень давно – всего только лет семьдесят пять тому назад1.

И, как часто бывает в науке, для этого необычайного открытия понадобились самые скромные средства и орудия.

Эти орудия – маленькая, тусклая горелка Бунзена да еще самодельный спектроскоп, сооруженный из сигарной коробки, стеклянного клина и двух половинок сломанной подзорной трубы.

Началось все дело с горелки, а потом уже дошла очередь и до спектроскопа.

Горелку Бунзена вы и сейчас еще найдете в любой лаборатории. За семьдесят пять лет она нисколько не изменилась.


Простая металлическая трубка, стоящая на подставке. По резиновому шлангу в трубку течет снизу светильный газ, а чуть пониже середины в ней проделано отверстие для воздуха. Поднесите к верхнему концу трубки зажженную спичку, и газ загорится тусклым, бледным, почти бесцветным пламенем. Днем этого пламени даже не заметишь. Горелка Бунзена горит гораздо тусклее самой плохонькой керосиновой коптилки. Но зато пламя у нее такое жаркое, какого никогда не бывает в нашей обыкновенной печке: две тысячи триста градусов.

Цветные сигналы

Роберт Бунзен жил в прошлом веке2. Много лет был он профессором химии в маленьком немецком городке Гейдельберге.


Роберт Бунзен


К середине 50-х годов он уже изобрел свою горелку и теперь изо дня в день старательно изучал, как ведут себя различные вещества в пламени высокой температуры.

Он погружал в пламя то металлы, то уголь, то соли, то известь, и наблюдал, что происходит со всевозможными химическими соединениями в горячем пламени светильного газа. Осенью 1858 года он заметил и записал в лабораторном дневнике, что многие вещества ярко окрашивают бесцветное пламя.

Впервые он обратил на это внимание во время опыта с поваренной солью.

Тонкими платиновыми щипчиками взял он маленький кристаллик соли и сунул в пламя горелки. Бесцветное пламя сразу перестало быть бесцветным. Как только попала в него поваренная соль, оно разгорелось ярче и пожелтело. А комната наполнилась удушливым запахом хлора.

Этому запаху Бунзен не удивился. Ведь поваренная соль состоит из двух веществ: хлора и натрия. Вот она и распалась на свои составные части в жарком пламени горелки, и хлор растекся по комнате.

Но почему же пламя из бесцветного сделалось желтым? Что окрасило его в желтый цвет – газ хлор или металл натрий?

Чтобы узнать это, Бунзен решил повторить опыт, но только вместо поваренной соли взять вещества, в которых будет натрий, а хлора не будет, – например соду глауберову соль, бромистый натрий. Если пламя и при этих опытах окрасится в желтый цвет, значит, всё дело в натрии.

Так и оказалось: и от соды, и от глауберовой соли пламя сразу пожелтело.

Тогда Бунзен проделал последний, решительный опыт: внес в пламя чистый натрий безо всяких примесей. Пламя и на этот раз стало ярко-желтым.

Значит, догадка верна: натрий действительно окрашивает бесцветное пламя газовой горелки в желтый цвет.

Удача этих опытов навела Бунзена на мысль: быть может, не только натрий, но и другие металлы способны окрасить бесцветное пламя горелки? Что, если взять вещества, в которых натрия нет? Например сильвин – соединение хлора с металлом калием?

Крохотный кристаллик сильвина был внесен в пламя газовой горелки. Пламя разгорелось так же ярко, как и от кристаллика поваренной соли, но окрасилось в другой цвет – не желтый, а фиолетовый.

И не один сильвин, а все вещества, в которых есть калий, дали тот же фиолетовый цвет: и селитра, и поташ, и едкое кали.

Вывод ясен: фиолетовый цвет пламени зависит от калия. Но Бунзен и тут не отказался от последней проверки: он внес в пламя чистый калий.

Все тот же фиолетовый цвет.

Значит, желтый цвет – признак натрия, а фиолетовый – калия.

Бунзен почувствовал, что опыты ведут его к какому-то важному открытию. Он стал испытывать металлы один за другим. Взял литий – и получил красное пламя, взял медь – и получил зеленое.

Опыты за опытами убеждали Бунзена в том, что он открыл новый способ химического анализа – такого анализа, для которого не нужна сложная химическая кухня, не нужны приборы, склянки, реактивы.

Теперь, когда химик захочет узнать, есть ли в каком-нибудь веществе калий, ему скажет об этом пламя газовой горелки, скажет не словами, а цветными сигналами.

Если пламя сделается фиолетовым, это значит: «В веществе есть калий». А если оно сделается не фиолетовым, а желтым, это будет означать: «Калия нет, есть натрий».

Можно будет на глаз узнавать химический состав любого вещества. Надо только изучить язык газового пламени, разобраться в его цветных сигналах.

Неудача

Бунзен раздобыл множество разных химических соединений и принялся их исследовать. Тоненькими платиновыми щипчиками захватывал он кусочек исследуемого вещества и вносил в пламя горелки. Если же вещество было не твердым, а жидким, то вместо щипчиков брал он платиновую проволочку толщиною с конский волос, изогнутую на конце в виде петельки. Каплю жидкости, повиснувшую на петельке, Бунзен осторожно вносил в пламя.

И каждый раз в лабораторном дневнике появлялась запись о том, каким цветом окрасилось пламя.

Скоро в руках у Бунзена был длинный перечень веществ и тех цветов, по которым их можно определить. Настоящая сигнальная книга: натрий – желтый сигнал, калий – фиолетовый сигнал, медь – зеленый сигнал, стронций – красный сигнал. И так далее, и так далее – на много страниц.

Сигнальная книга была готова, и вот тут-то Бунзен увидел, что пользоваться этими сигналами не так-то просто.

В перечне была, например, такая запись:

«Раствор солей натрия – желтый цвет.

Раствор солей натрия с небольшой примесью солей лития – тоже желтый цвет.

Раствор солей натрия с небольшой примесью солей калия – тоже желтый цвет».

Как же расшифровать эти сигналы? Как отличить чистый натрий от натрия с примесью калия и от натрия с примесью лития?

Бунзен зажег три газовых горелки. В пламя каждой горелки внес он по капле раствора поваренной соли. Но в одной капле поваренная соль была чистая (соединение натрия с хлором), в другой она была смешана с солями лития, в третьей – с солями калия.

Все три пламени были одного цвета: желтого. Никакой разницы между ними не было. Очевидно, натрий так сильно окрасил их в свой желтый цвет, что глаз не в силах был уловить красный оттенок лития и фиолетовый оттенок калия.

Тогда Бунзен подумал: а что, если помочь глазу – вооружить его цветными стеклами или цветными жидкостями?

Он налил в стаканчик немного раствора синей краски индиго и стал рассматривать все три пламени сквозь синюю жидкость.

И тут он сразу заметил различие в цвете.

Синяя краска индиго поглотила желтые лучи натрия, и поэтому пламя, где была поваренная соль с примесью лития, казалось теперь малиново-красным. Пламя, куда был подмешан калий, тоже казалось красным, но другого оттенка – пурпурного. А пламя, в котором была поваренная соль без всяких примесей, как будто и вовсе исчезло.

Бунзен вооружился целой коллекцией цветных стекол и стаканчиков с цветными жидкостями. Он надеялся, что эта коллекция поможет ему расшифровать все сигналы в его книге.

Но вот ему попалась на глаза такая запись:

«Соли лития – малиново-красный цвет.

Соли стронция – малиново-красный цвет».

Опять два разных вещества, а цвет один и тот же. Не помогут ли и тут цветные жидкости и стеклышки?

Долго бился Бунзен, подбирая цвета, сквозь которые можно было бы подметить разницу между пламенем лития и пламенем стронция. Но такого цветного стекла, такой цветной жидкости он не нашел.

Пламя лития никак не удавалось отличить от пламени стронция. Значит, краски и цветные стекла помогают не всегда.

А если так, – пламя газовой горелки не дает надежного ключа к химическому анализу.

Казалось, Бунзен потерпел поражение.

Но тут на помощь его газовой горелке пришел спектроскоп Кирхгофа.

Простой кусок стекла

В том же университетском городке Гейдельберге жил профессор физики Густав Кирхгоф. Узнав о затруднениях Бунзена, Кирхгоф решил ему помочь. Он обещал Бунзену построить такой физический прибор, который откроет разницу в цвете пламени даже и тогда, когда отказываются служить цветные стекла и растворы красок.

План у Кирхгофа был очень простой. В его лаборатории хранилась призма из стекла «флинтглас», которую когда-то, за много лет перед тем, выточил и отшлифовал знаменитый мюнхенский оптический мастер Иосиф Фраунгофер. Призма – это простой кусок стекла, выточенный в форме клина. Но у призмы есть замечательное свойство: лучи света никогда не проходят сквозь нее прямо, а неизменно отклоняются в сторону, – как будто что-то отталкивает их прочь от ребра призмы. И при этом не все лучи отклоняются одинаково: фиолетовые отклоняются сильнее всех других, красные меньше всех других, а лучи остальных цветов попадают в промежуток между красными и фиолетовыми. Поэтому если через призму пропустить пучок света, в котором смешаны лучи различных цветов, то, выйдя из призмы, эти лучи пойдут по разным дорогам. Так призма разлагает пучок света, состоящий из лучей разных цветов, разбивает его на составные части.


Густав Кирхгоф


Иосиф Фраунгофер, который изготовил флинтгласовую призму, хранившуюся в лаборатории Кирхгофа, пользовался этим замечательным свойством призмы для того, чтобы разлагать на составные цвета солнечный луч. Через узкую щель впускал он в темную комнату пучок солнечных лучей и на пути этих лучей ставил свою призму. Лучи входили в призму узким пучком, а выходили широким веером. На противоположную белую стену ложилась разноцветная полоса света – солнечный спектр. В полосе были все семь цветов радуги: красный, за ним оранжевый, потом желтый, зеленый, голубой, синий и фиолетовый. Фраунгофер, как и многие физики до него, знал, что все эти цвета, от красного до фиолетового, все тончайшие оттенки цветов радуги, постепенно переходящие друг в друга, содержатся в белом солнечном свете, но эти отдельные цвета и оттенки заметны глазу только тогда, когда призма разлучает их между собою, разлагает в разноцветный спектр.


Путь лучей через призму

На экране – полоска спектра. Буквой Ф обозначен фиолетовый край спектра, буквой К – красный.


– Почему же, – подумал Кирхгоф, – не воспользоваться этой же самой стеклянной призмой для того, чтобы исследовать свет, испускаемый газовой горелкой? Если выделить узкий пучок такого света и пропустить его через призму, – призма сразу разгадает те сигналы, которых не разгадали ни цветные стекла, ни стаканчики с красками.

Сигналы расшифрованы

Кирхгоф принес Бунзену свой прибор. Этому прибору изобретатель дал название «спектроскоп» – слово, которое он сам придумал. Теперь это слово известно всякому физику и химику, и в любой лаборатории можно увидеть спектроскоп, изготовленный на оптической фабрике. Но как непохожи эти современные удобные и точные спектральные приборы на неуклюжий спектроскоп, который Кирхгоф изготовил собственными руками! Деревянная коробка из-под сигар, стеклянная призма и старая подзорная труба с тремя выпуклыми стеклами – вот из чего был сделан первый спектроскоп.

Подзорную трубу Кирхгоф распилил пополам. Из одной трубы получилось две: первая с одним выпуклым стеклом, вторая – с двумя.

Обе трубки Кирхгоф вставил в смежные стенки сигарной коробки под углом одна к другой.

Трубку, в которой было только одно стекло, он расположил так, чтобы она глядела стеклом в коробку, а пустым отверстием наружу. Это отверстие он прикрыл картонным кружком с узкой щелью. Через щель должны были проникать в коробку лучи. Там, внутри коробки, их встречала призма, которую Кирхгоф укрепил на вращающейся оси. Пройдя сквозь призму, пучок лучей сворачивал в сторону и устремлялся в другую трубку широким разноцветным веером.


Спектроскоп Кирхгофа

В полую стеклянную призму 1 залит сероуглерод. призму поворачивают ручкой 2. Угол поворота рассчитывают по удаленной шкале, наблюдаемой через зеркало 3.4– горелка Бунзена.


Приложив глаз к этой трубке и медленно поворачивая призму вокруг оси, можно было рассмотреть весь спектр лучей, попавших в щель спектроскопа.

В первый же день Бунзен и Кирхгоф испытали новый прибор. Бунзен зажег свою горелку, а Кирхгоф навел на пламя свой спектроскоп. Затем Бунзен стал вводить в пламя по очереди натрий, калий, медь, литий, стронций. И каждый раз, когда пламя меняло свой цвет, оба они внимательно рассматривали спектр лучей, испускаемых раскаленными пара́ми металлов.

Спектры эти оказались не такими, как солнечный. В солнечном спектре все семь цветов радуги – от красного до фиолетового – ложатся сплошным рядом, а в спектре окрашенного газового пламени Кирхгоф и Бунзен увидели разрозненные цветные линии.

В спектре раскаленных паров калия горели две красные линии и одна фиолетовая, у паров натрия была одна линия – желтая3, у паров меди было много линий, среди которых ярче всех горели три зеленые, две желтые и две оранжевые. И каждая цветная линия появлялась всякий раз на том самом месте, где в солнечном спектре лежит цвет точно такого же оттенка: оранжевые линии меди ложились в оранжевой части спектра, желтая линия натрия – в желтой.

Наконец-то Бунзену удалось узнать, чем отличается малиновое пламя лития от малинового пламени стронция. Когда он смотрел на них простым глазом, он не различал их, но спектр одного пламени оказался совсем непохожим на спектр другого. Достаточно было посмотреть на них в спектроскоп Кирхгофа, чтобы сразу сказать, где литий, где стронций. Спектр лития состоит из одной яркой красной линии и одной оранжевой послабее, а спектр стронция – из одной голубой и нескольких красных, оранжевых, желтых линий.

Один за другим цветные сигналы были расшифрованы. Задача была решена.

1.В 1868 г. (Прим. изд.)
2.В XIX веке. (Прим. изд.)
3.Внимательно изучив эту желтую линию, физики обнаружили, что на самом деле она двойная: она состоит из двух очень близко расположенных друг к другу желтых линий. Эти линии получили у физиков особое название: их называют линиями D1 и D2.
Ograniczenie wiekowe:
6+
Data wydania na Litres:
25 marca 2014
Data napisania:
1936
Objętość:
211 str. 69 ilustracje
ISBN:
978-5-906122-03-2
Format pobierania: