Czytaj tylko na LitRes

Książki nie można pobrać jako pliku, ale można ją czytać w naszej aplikacji lub online na stronie.

Основной контент книги Robust Statistics. Theory and Methods (with R)
Tekst PDF

Objętość 463 strony

0+

Robust Statistics. Theory and Methods (with R)

Czytaj tylko na LitRes

Książki nie można pobrać jako pliku, ale można ją czytać w naszej aplikacji lub online na stronie.

657,72 zł

O książce

A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.

Gatunki i tagi

Zaloguj się, aby ocenić książkę i zostawić recenzję
Książka «Robust Statistics. Theory and Methods (with R)» — czytaj online na stronie. Zostaw komentarze i recenzje, głosuj na ulubione.
Ograniczenie wiekowe:
0+
Data wydania na Litres:
30 marca 2019
Objętość:
463 str.
ISBN:
9781119214670
Całkowity rozmiar:
5.1 МБ
Całkowita liczba stron:
463
Właściciel praw:
John Wiley & Sons Limited
Audio
Średnia ocena 4 na podstawie 126 ocen
Tekst, format audio dostępny
Średnia ocena 4,3 na podstawie 372 ocen
Audio
Średnia ocena 4,6 na podstawie 3288 ocen
Audio
Średnia ocena 4,5 na podstawie 276 ocen
Tekst, format audio dostępny
Średnia ocena 4,7 na podstawie 788 ocen
Tekst
Średnia ocena 4,9 na podstawie 562 ocen
Tekst PDF
Średnia ocena 0 na podstawie 0 ocen
Tekst PDF
Średnia ocena 0 na podstawie 0 ocen