Ключевые идеи книги: Оружие математического поражения: как технология Big Data усугубляет неравенство и угрожает демократии. Кэти О'Нил

Tekst
0
Recenzje
Przeczytaj fragment
Oznacz jako przeczytane
Jak czytać książkę po zakupie
Nie masz czasu na czytanie?
Posłuchaj fragmentu
Ключевые идеи книги: Оружие математического поражения: как технология Big Data усугубляет неравенство и угрожает демократии. Кэти О\'Нил
Ключевые идеи книги: Оружие математического поражения: как технология Big Data усугубляет неравенство и угрожает демократии. Кэти О\'Нил
− 20%
Otrzymaj 20% rabat na e-booki i audiobooki
Kup zestaw za 24,28  19,42 
Ключевые идеи книги: Оружие математического поражения: как технология Big Data усугубляет неравенство и угрожает демократии. Кэти О'Нил
Audio
Ключевые идеи книги: Оружие математического поражения: как технология Big Data усугубляет неравенство и угрожает демократии. Кэти О'Нил
Audiobook
Czyta Татьяна Маерс
12,14 
Szczegóły
Ключевые идеи книги: Оружие математического поражения: как технология Big Data усугубляет неравенство и угрожает демократии. Кэти О'Нил
Czcionka:Mniejsze АаWiększe Aa

Краткое содержание книги: Оружие математического поражения: как технология Big Data усугубляет неравенство и угрожает демократии. Кэти О'Нил

Оригинальное название:



Weapons of Math Destruction: How Big Data Increases Inequality and Threatens



Автор:



Cathy O'Neil



Тема:



Обязательное чтение



Правовую поддержку обеспечивает юридическая фирма AllMediaLaw



www.allmedialaw.ru



Введение

Начало активного развития экономики Big Data пришлось на 2008—2010 гг., когда математики и специалисты в области статистики погрузились в изучение жизни человека: его желаний, интересов, физических возможностей и психологических особенностей. Их главной целью стало научиться оценивать, предугадывать и влиять на действия homo sapiens в работе, обучении, сексе, контролировать лояльность людей к идеям.



Но «что-то пошло не так», и Big Data стали превращаться в оружие математического поражения.

Один из главных просчетов специалистов в том, считает автор, что созданные математическим путем приложения слишком часто базируются на ошибочных алгоритмах поведения человека. Вынесенные самообучающейся программой вердикты не анализируются и не обсуждаются в обществе

. Кроме того, сегодня очевидно, что ущемляются права обычных людей. Если несправедливость выводов алгоритма по отношению к себе заметит обеспеченный человек, то он сможет добраться до причин и восстановить справедливость. Кто небогат, либо не заметит ошибку машины, либо не будет располагать ресурсами для ее исправления.



Так, соискателю могут отказать в работе из-за выводов Big Data о его слишком низком кредитном рейтинге или криминальном прошлом. Иногда это происходит из-за сбоя программы, по ошибке. Но жертва почти гарантированно не узнает, что в действительности послужило причиной неудачи. Несправедливость проявляется в разных сферах жизни: алгоритм склоняет людей к получению необоснованно дорогого образования, переплате за страховки, дорогим кредитам и т. д. В итоге бедные становятся еще беднее.</

To koniec darmowego fragmentu. Czy chcesz czytać dalej?