Czytaj książkę: «Manual de Física Estadística», strona 2

Czcionka:

Tal com hem avançat al final de la secció anterior, un pas previ al tractament estadístic consisteix en l'enumeració dels estats microscòpics d'un sistema de N partícules, la qual cosa involucra sovint nombres combinatoris. Efectuada aquesta enumeració, el càlcul de la probabilitat d'un estat i dels valors mitjans de les magnituds físiques necessita els conceptes de probabilitat i distribució de probabilitat. Dedicarem aquesta secció a una breu revisió de la combinatòria matemàtica, i la següent secció a aspectes relacionats amb la probabilitat.

La taula 1 mostra algunes de les equacions del càlcul combinatori que farem servir al llarg d'aquest curs particularitzades al cas de N objectes («partícules») a distribuir en n capses («nivells» si s'efectua la identificació anterior). Les equacions de la taula 1 corresponen al nombre de disposicions g(N,n) distintes de les N partícules en els n nivells (suposem que no existeix degeneració en els nivells) per al cas de partícules distingibles i indistingibles,2 i es poden justificar sobre la base d'arguments senzills. Per exemple, per a N objectes distingibles a distribuir entre n capses sense cap restricció en el nombre d'objectes per capsa, g(N,n) = nN. Si els objectes foren indistingibles, el problema d'avaluar g(N,n) es redueix ara a comptar el nombre de disposicions possibles per a una sèrie composta per N objectes iguals + (n - 1) parets, ja que n capses contigües suposen (n+1) parets, de les quals la nombre 1 i la (n + 1) ocupen posicions fixes.3 Evidentment, aquest nombre és Si impo sem la condició d'un sol objecte per capsa, amb n > N, aleshores el nombre de disposicions seria per a objectes distingibles i per a objectes indistingibles, ja que el nombre de permutacions que podem realitzar entre els objectes en les capses sense donar lloc a cap disposició nova és precisament N! Finalment, l'equació per a les permutacions amb repetició de N objectes distingibles distribuïts de manera que n'hi ha Ni d'ells en la capsa i es pot obtindré a partir de l'equació



Taula 1

Si utilitzem la nomenclatura d'estats i partícules, l'existència de degeneracions gi en cada nivell i d'energia εi dóna lloc al fet que a cada nivell li cor- responguen diversos estats, i es pot tractar com es mostra en la taula 2, on hem particularitzat la teoria combinatòria a les tres estadístiques que apareixen en aquest curs: l'estadística clàssica de Maxwell-Boltzmann (MB) i les estadístiques quàntiques de Bose-Einstein (BE) i Fermi-Dirac (FD).

Quan es consideren distribucions de N partícules en Física Estadística, generalment s'ha d'avaluar no N! sinó lnN!. Quan N » 1 (en sistemes macroscòpics, N ~ NA ≈ 6 x 1023), es pot efectuar la següent aproximació



Taula 2


Figura 7

d'on N! ≈ NN e-N. En l'eq. (4), hem tingut present que per a valors grans de N, la suma que apareix en aquesta es pot aproximar per la integral (≡ àrea tancada sota la corba InN vs. N de la fig. 7).

El resultat mostrat en l'eq. (4) es denomina aproximació de Stirling, i és molt emprada en Física Estadística. Un valor encara més exacte és [Kittel i Kroemer, A.l; Reif, A.6]


La taula 3 mostra diversos valors de InN! calculats directament i mitjançant les aproximacions de les eqs. (4) i (5). La desviació (en %) fa referència a la diferència entre aquestes darreres equacions.


Taula 3

3. Probabilitat. Distribucions binòmia, de Gauss i de Poisson

3.1 Probabilitat

Definim la probabilitat experimental o probabilitat a posteriori d'un succés com el límit, si n'hi ha, del quocient entre el nombre d'assaigs favorables al succés i el nombre total d'assaigs realitzats, quan aquest darrer tendeix a infinit. Aquest límit es calcula mitjançant una extrapolació dels resultats obtinguts, i un succés per al qual existeix el límit (és a dir, per al qual es pot definir una probabilitat a posteriori) es diu que és un succés aleatori, i el procés corresponent s'anomena procés aleatori. A cadascun dels successos d'un procés aleatori se li pot assignar un nombre u de manera que W(u) siga la probabilitat del succés. La variable u es coneix amb el nom genèric de variable aleatòria o estocàstica.

Es suposen coneguts els conceptes elementals de la probabilitat [de la Rubia i Brey, cap.l; Stark i Woods, cap.l]. Per descriure una situació des del punt de vista estadístic, és a dir, en termes de probabilitats, cal considerar un conjunt o col·lectiu de N sistemes (N → ∞) preparats de manera semblant. Per exemple, és possible donar una descripció estadística del llançament d'un dau considerant que un gran nombre de daus semblants es llancen en circumstàncies similars. Alternativament, es pot també llançar el mateix dau un nombre N de vegades en circumstàncies semblants. La probabilitat d'un determinat succés es defineix com la fracció (nombre d'experiments en què es produeix aquest succés) / (nombre total d'experiments), de manera que la suma de probabilitats és igual a la unitat.

En aquells casos en què no hi ha cap raó perquè determinat succés aleatori es presente amb major freqüència que la resta, és possible assignar una probabilitat a priori igual per a tots i cadascun dels successos possibles. Aquest seria el cas dels successos aleatoris cara/creu per a una moneda o dels successos possibles per a un dau no carregat.

3.2 Distribució binòmia

Anem a analitzar detalladament molts dels conceptes probabilístics i estadístics que apareixeran durant el curs en un cas particular de gran importància en Física Estadística: el problema del camí aleatori [Reif, cap. 1 ; de la Rubia i Brey, cap. 1]. Aquest problema es pot formular de manera un tant col·loquial de la forma següent. Un borratxo parteix d'un fanal en un carrer seguint un moviment4 1D. La condició d'intoxicació etílica es tradueix en el fet que cada pas a esquerra o dreta és independent del pas precedent. La probabilitat que el pas siga cap a la dreta és p, i que el pas ho siga cap a l'esquerra q, amb q = 1 - p. En general, p ≠ q (el carrer podria estar inclinat, p. ex.).

Si es considera l'eix x al llarg del carrer amb l'origen x = 0 en la ubicació del fanal, la posició del borratxo després de N passos de longitud individual / és x = ml, amb m un nombre enter (positiu, negatiu o zero). La pregunta típica és en aquest cas: ¿quina és la probabilitat que el borratxo estiga just en determinada posició x? Per contestar-la, s'ha de considerar un gran nombre N de borratxos similars deambulant en carrers semblants, tot i que seria també possible repetir l'experiment N vegades amb la mateixa persona, si aquesta roman- guera en condicions d'intoxicació anàlogues. En el primer cas, la pregunta és, ¿quina serà la fracció de borratxos situats en x = ml, després de N passos? I per al segon seria: ¿quantes vegades (fracció del total) acabarà el contumaç individu en la posició x = ml després de N sèries de N passos cadascuna?

La Física no es preocupa habitualment per l'esdevenir d'un borratxo, però el problema del camí aleatori apareix en situacions de gran interès com ara la difusió d'una molècula en un gas o la conformació d'una cadena polimèrica en una dissolució. A més a més, els sistemes amb dos estats de probabilitats p i q són molt habituals en magnetisme i física-química de superfícies, p. ex. A l'últim, el problema del camí aleatori permet una exposició elemental de molts conceptes estadístics, i per tant anem a tractar-ho detalladament a continuació per al cas més asèptic d'una partícula que segueix un moviment 1D.

Pretenem calcular la probabilitat WN(m) de trobar la partícula en la posició x = ml, després d'una seqüència de N desplaçaments elementals (passos) dels quals n1 són cap a la dreta i n2 cap a l'esquerra, de manera que m = n1 - n2 i N = n1 + n2. Aquesta probabilitat és, tenint en compte la hipòtesi d'independència estadística per als passos,


amb n2 = N - n1. Notem que el primer factor dóna compte del fet que qualsevol seqüència de n1 passos a la dreta i n2 a l'esquerra mena a x = (n1 - n2)l, independentment de l'ordre en què aquests es realitzen.5 La funció de probabilitat de l'eq. (6) s'anomena distribució binòmia, i rep el seu nom de la condició de normalització


En funció del desplaçament net m, l'eq. (6) es pot escriure com


sent-hi (N + m) = 2n1 i (N - m) = 2n2 dos enters parells. Per aplicació de l'eq. (6) (o l'eq. 8) al cas N = 20 passos i p = q = 1/2 és immediat obtindré la probabilitat WN(n1) de la fig. 8. La simetria de la distribució entorn del valor mitjà es perd si p ≠ q, és a dir, en el cas asimètric.


Figura 8

En general, coneguda una distribució de probabilitat P(ui) d'una variable aleatòria ui que pot prendre qualsevol dels M valors discrets ul, u2, …, uM, el valor mitjà de qualsevol funció f(u) és


on hem fet servir la condició de normalització per a P(ui).

Alguns dels valors mitjans més útils en Física Estadística són el valor mitjà de la variable u,


i els valors mitjans, denominats moments d'ordre n. Són també d'interès el valor mitjà de la desviació , anomenat moment central de primer ordre,


i la dispersió ( o moment central de segon ordre)


Notem que en aquest cas cada terme de la suma en l'eq. (9) és positiu o nul, ja que i també P(ui) ≥ 0. Com menys agrupats estiguen els valors de «¿ a l'entorn de u, més gran serà la dispersió. Es poden definir altres valors mitjans, com el moment d'ordre enèsim (À«)n amb n > 2, però són de menor utilitat. A partir de l'eq. (12) es defineix la desviació quadràtica mitjana o desviació estàndard com


La magnitud ∆*u és una mesura lineal de l'amplitud del recorregut en què la variable u està distribuïda. El quocient informa sobre la desviació relativa de la variable u respecte del valor mitjà, i és de gran importància en Física Estadística. El coneixement més complet que es pot tindré d'una variable aleatòria és la seua distribució de probabilitat, la qual cosa permet calcular tots els seus moments. A la inversa, és possible obtindré aquesta distribució si es coneixen tots els moments. El coneixement dels primers moments és, però, suficient per a la major part dels problemes en Física Estadística.

Estem en condicions d'aplicar ara les definicions i resultats de les eqs. (9) –(13) al cas particular de la distribució binòmia de l'eq. (6). A partir de l'eq. (10), resulta


prenent p i q com a dues variables independents a l'efecte de la derivació, i substituint (p + q) = 1 una vegada efectuada aquesta. Conegut , , d'on . Aquests resultats es podrien haver anticipat: com que p és la probabilitat d'un pas a la dreta, el nombre mitjà de passos a la dreta d'un total de N és Np. Notem que si p = q, aleshores tal com es pot esperar en una situació simètrica.

La dispersió es pot ara avaluar de la forma


on hem fet ús de


amb . Així queda que


amb . O siga, la desviació quadràtica mitjana (i, amb això, el recorregut dins del qual n1 està distribuïda) augmenta amb , però l'amplitud relativa d'aquest recorregut disminueix amb . Aquests resultats, que es poden comprovar a partir de la fig. 9a–b per a una distribució binòmia amb p = q = 1/2, són de gran importància en Física Estadística. Finalment, com que , veiem de seguida que , fent servir l'eq. (15).


Figura 9a


Figura 9b

3.3 Distribució de Gauss

La distribució de probabilitats de Gauss o distribució gaussiana es pot obtindré com a límit de la distribució binòmia quan N pren valors grans. Abans de demostrar aquest resultat, exposarem de forma breu com es pot passar d'una distribució de probabilitats W de variable aleatòria ui discreta a una altra distribució w de variable u contínua [de la Rubia i Brey, cap. 1].

Una variable aleatòria contínua es defineix mitjançant la funció densitat (o distribució) de probabilitat w(u) el significat de la qual és tal que

w(u)du = probabilitat que la variable u prenga un valor dins de l'interval comprès entre u i u+du.

Suposem una variable aleatòria discreta ui amb distribució de probabilitat W(ui). Per a major senzillesa, admetrem que la diferència entre dos valors consecutius de la variable anterior pren un valor constant δu, de manera que ui+1 - ui = δu, ∀i. Admetrem a més que δu és suficientment petita com perquè puguem definir un du que, tot i permetent la utilització del càlcul diferencial, siga molt més gran que δu (vegeu la fig. 10).


Figura 10

Finalment, suposarem que la variació de W amb ui és suficientment lenta com perquè W(ui) siga aproximadament constant per a tots els ui situats dins un mateix interval d'amplitud du. Tenint en compte que en l'interval du hi ha duu valors permesos de la variable discreta, w(u)du = W(punts en l'interval du) x duu, que permet passar d'una distribució discreta a una altra contínua i viceversa. Totes les definicions referents a valors mitjans i normalitzacions vistes per a una variable discreta es poden traslladar al cas continu substituint sumatoris per integrals, i tenint en compte que es possible estendre el rang de qualsevol variable aleatòria contínua des de -∞ a +∞ simplement considerant nuls els valors de la funció densitat de probabilitat corresponents a valors no possibles de la variable aleatòria. L'eq. (9) queda aleshores així


Estem ja en condicions d'estudiar el límit de la distribució binòmia en l'eq. (6) quan N → ∞. Aquest límit està tractat de forma rigorosa en la bibliografia [de la Rubia i Brey, cap. 1; Reif, cap. 1], i ací ens limitarem tan sols a esbossar-ne els detalls més importants. Si N pren un valor gran, la distribució binòmia tendeix a presentar un màxim molt pronunciat al voltant de , qüestió que es pot verificar fàcilment només recalculant els resultats de la fig. 8 per a N » 20. Aquest resultat suggereix la possibilitat d'efectuar un desenvolupament6de In WN(n1) al voltant de en l'eq. (6). Per efectuar aquest desenvolupament, considerarem n j com un nombre real, admetent que quan N és molt gran podem substituir un gran nombre de punts WN(n1) corresponents als valors enters de n1 per una funció contínua que passe per tots els punts. Escrivim aleshores


amb


i


on hem fet ús de l'aproximació de Stirling de l'eq. (4) per avaluar els logaritmes. No analitzarem la convergència del desenvolupament efectuat en l'eq. (19) detalladament7 [de la Rubia i Brey, cap. 1]. Admetrem que podem negligir els termes d'ordre superior al segon i escriure


Ara bé, si substituint en WN , la distribució de probabilitats de l'eq. (22) no estaria normalitzada a causa de les aproximacions realitzades. Per procedir a normalitzar-la, considerarem que tant WN com n1 es poden tractar com a funcions pràcticament contínues quan N pren valors grans, de manera que la condició de normalització és


on hem estès la integral des de -∞ fins a +∞ perquè la contribució de 1'integrand és negligible quan suficientment gran com perquè WN estiga lluny del valor corresponent al seu màxim. La integral de l'eq. (23) es pot reduir a la forma general (vegeu la taula 4)



Taula 4

Quan la integral s'estén des de -∞ fins a +∞ el seu valor és igual al doble del valor tabulai si h es parell, i zero si h és imparell. En general, I(h) = [(h – l)/(2a2)] I(h – 2) [de la Rubia i Brey, cap. 1; Reif, A.2–4], En el nostre cas, s'obté de l'eq. (23) i la taula 4 que la ctant= 1/(2πNpq)1/2 i, per tant,


d'acord amb les eqs. (14) i (17). L'eq. (25) constitueix la denominada distribució de Gauss o gaussiana i coincideix amb la distribució binòmia quan N→ ∞ per a aquells valors en què totes dues són apreciablement distintes de zero. Tanmateix, observem que la distribució de l'eq. (25) està definida (encara que és pràcticament nul·la) per a |n1| < N i és a més simètrica respecte a , la qual cosa no és el cas de la distribució binòmia si p ≠ q. No obstant l'anterior, el raonament que ha portat a l'eq. (25) és de naturalesa relativament general, per la qual cosa les distribucions gaussianes apareixen sovint en estadística quan es tracta amb nombres grans, i presenten l'avantatge respecte a les binòmies de ser molt més senzilles des del punt de vista pràctic.

Podem tornar ara al cas de la partícula de moviment 1D tractat en la secció anterior i preguntar-nos per la probabilitat de trobar la partícula en una posició x entre x i x + dx, sent dx «microscòpicament gran» (dx » /) però suficientement petit com perquè es puga aplicar el càlcul diferencial.8 El pas de la variable discreta m = nln2 = 2n1N a la variable contínua x es pot fer per mitjà de la relació (vegeu la fig. 10) w(x)dx = WN(m) dx/2l, ja que δx = 21 en canviar m dues unitats quan n1 varia en una unitat. De l'eq. (25) reescrita per a m resulta immediatament


on x = ml, per al valor mitjà i la dispersió, d'acord amb la notació habitual en estadística matemàtica. Es pot provar que la distribució gaussiana de l'eq. (26) (també anomenada distribució normal) té les següents propietats: (i) està normalitzada a la unitat, (ii) compleix que (iii) verifica que . Per comprovar-ho, només cal efectuar el canvi de variable y ≡ x - μ i avaluar les integrals resultants amb ajuda de la taula 4 [de la Rubia i Brey, cap. 1].

La forma típica d'una distribució de Gauss és la representada en la fig. 11. Es pot demostrar8 directament de l'eq. (26) que l'àrea compresa entre les ordenades μ - σ i μ + σ i l'eix d'abscisses és 0.683 [Reif, A.5]. Aquesta àrea arriba a ser de 0.997 per al cas de l'interval [μ - 3σ, μ + 3σ], molt propera ja a l'àrea total corresponent a l'interval entre -∞ i +∞ que és 1 per la condició de normalització. La distribució esdevé per tant més aguda com menor és a. En el límit σ → 0, w(x) tendeix a la funció delta de Dirac [Reif, A. 7; de la Rubia i Brey, cap. 1],


tal com es mostra en la fig. 12.


Figura 11


Figura 12

Al llarg d'aquesta secció hem restringit el tractament a una funció de distribució amb una sola variable aleatòria. La descripció estadística d'una situació en la qual intervinga més d'una variable requereix només generalitzacions directes de les funcions de distribució de probabilitats corresponents [Reif, cap. 1], tal com veurem durant el curs.

3.4 Distribució de Poisson

Quan la probabilitat p és petita però N és molt gran de manera que Np ≡ λ és finit, es pot obtindré una nova distribució (denominada distribució de Poisson) com a cas límit de la binòmia. La distribució de Poisson es fa servir per a valors petits de n1. En efecte, si fem n1n « N i considerem el quocient


d'on WN(n) = WN(O) λn/n!. Per la condició de normalització, WN(0) = e, i obtenim així


que és la funció de distribució de Poisson. És immediat demostrar que i utilitzant mètodes similars als emprats en les eqs. (14) i (16), respectivament, d'on . La distribució de Poisson apareix en molts problemes de Física Estadística: un gas distribuït en un determinat volum [Kittel i Kroemer, cap. 6], processos d'adsorció sobre superfícies [Kittel i Kroemer, A.C], desintegracions radioactives i emissions termoiòniques [Lands- berg, cap. 26], etc. Si considerem una desintegració radioactiva, p. ex., i prenem com a succés elemental l'emissió o no d'una partícula en un instant temporal entre t i t + dt, assignant p = γdt « 1 a l'emissió i q = γdt ~ 1 a la no-emissió, aleshores sobre un total d'intents N = t/dt» 1 distribuïts al llarg d'un temps macroscopic t, la probabilitat d'emissió de n partícules ve donada per la distribució binòmia


que d'acord amb les eqs. (28)–(29) es pot aproximar per la de Poisson


per a N » 1 amb λ ≡ Nγdt = γt finit. Altres problemes es poden tractar de manera semblant a l'anterior.

4. Sistemes de N espins

Moltes de les distribucions de probabilitat que apareixen en Física Estadística són gaussianes de màxims molt pronunciats. Per il·lustrar aquest fet, considerarem un sistema de N espins independents separats espacialment, cadascun dels quals pot trobar-se en un estat ↑ o en un estat ↓ [Rosser, cap. 2; Kittel i Kroemer, cap. 1]. Per simplicitat, suposarem que les probabilitats associades a aquests estats són iguals, p = q = 1/2, si bé el cas asimètric és també força interessant [Reif (2), cap. 1]. La fig. 13 mostra esquemàticament el sistema considerat.


Figura 13

Evidentment, el nombre total d'estats microscòpics possibles per al sistema de N espins és gT = 2N, i la probabilitat de trobar n ≤ N dels espins en l'estat ↑ és, d'acord amb l'eq. (6),


De les eqs. (14) i (17), , . Si N = 3, aleshores . En aquest cas les desviacions de n respecte del valor mitjà (que anomenarem «fluctuacions» entorn de l'esmentat valor mitjà) són importants. Notem que una mesura del valor absolut de les dites fluctuacions és , i del valor relatiu d'aquestes, . La situació canvia dràsticament per a un sistema macroscopic de N = 6.4 x 1023 espins (aproximadament un mol d'espins): ara = 3.2 x 1023, σ = 4 x 1011, , i la distribució de probabilitats esdevé extremadament abrupta entorn de . En efecte, si prenem arbitràriament l'amplària de la distribució com a 2σ (vegeu la fig. 11), aleshores , la qual cosa significa que la distància al llarg de 1'abscissa des de n = 0 fins a l'amplària de la distribució 2σ. ÉS a dir,



Per a N gran, la distribució binòmia ≈ distribució gaussiana. Hem vist que per a una distribució gaussiana, aproximadament el 68% dels valors de n cauen dins d'un interval d'amplària ±σ centrat en , xifra que s'eleva fins al 99.7% per a un interval d'amplària ±3σ. ES pot demostrar que per a una distribució gaussiana, la probabilitat d'obtindré un valor de n que es desvie del valor mitjà en més de ±100σ és de l'ordre de 10-2174 [Rosser, cap. 2]. Com a mitjana, s'hauria de mostrejar doncs un total de 102174 estats microscòpics com el mostrat en la fig. 13 per trobar-ne un el valor de n del qual es desviarà de en més de 100σ. Podem elaborar encara més aquest argument si supo-sem, p. ex., que cada espín canvia d'estat cada 10-12 s, o siga, 1012 vegades per segon.10 L'estat microscopic del sistema de la fig. 13 canvia amb la condició que només un dels N espins canvie de sentit, i la resta roman en les seues posicions originals. Per tant, per a un sistema de 6.4 x 1023 espins hi ha 6.4 x 1023 x 1012 = 6.4 x 1035 canvis en l'estat microscopic per segon. L'edat de la Terra és d'uns 4.5 x 109 anys = 1.42 x 1017 s, la qual cosa permet un total de 1053 estats microscòpics distints en el sistema d'espins. Com a mitjana, per obtindré una desviació de més gran que ±100σ, s'hauria d'esperar un temps de l'ordre de 102174/1053 = 102121 edats de la Terra. Aquest és el significat de la paraula mai en Física Estadística.11

5. Espai fàsic. Sistemes de molts graus de llibertat

5.1 Espai fàsic

En Física Estadística clàssica, el nombre f de coordenades de posició independents necessàries per a definir un sistema s'anomena nombre de graus de llibertat del sistema. Així un conjunt de N partícules puntuals que segueix un moviment 3D té f= 3N, ja que són necessàries tres coordenades de posició per partícula. Per descriure un sistema de N partícules amb coordenades generalitzades qi i moments generalitzats Pi es fa servir un espai de 2f = 3N + 3N = 6N dimensions en el cas d'un moviment 3D. Aquest espai s'anomena espai de fases del sistema o espai Г, a diferència de l'espai μ constituït per les 3 + 3 = 6 dimensions característiques del moviment 3D d'una de les N partícules del sistema. Un punt de l'espai de fases determina l'estat del sistema a través de les posicions i moments de les N partícules.

Com hem vist en la secció 1, l'enumeració dels estats microscòpics possibles d'un sistema és un pas previ a tota descripció estadística. Per tal de procedir a aquesta enumeració, cal subdividir els camps de variació de q i p en intervals discrets , amb (vegeu la fig. 14), on h0 és una constant de dimensions de moment angular [Reif, cap. 2]. L'espai fàsic queda dividit aleshores en cel·les iguals de volum L'espai fàsic accessible és la regió limitada per «hipersuperfícies» definides per funcions del tipus F({q}) = V o f({q,p}) = E, sent-hi V i E el volum i l'energia del sistema, o qualsevol altra que represente una condició de contorn sobre el sistema. L'estat microscopic del sistema s'especifica establint els f valors de q i de p dins dels intervals respectius, és a dir, associant una cel·la de volum de l'espai fàsic de 2f dimensions. A efectes pràctics es pot considerar com un punt representatiu de l'estat microscopic del sistema en l'espai fàsic (vegeu la fig. 14). Una variació en l'espai fàsic accessible al sistema deguda a un canvi en les seues condicions de contorn comporta sempre una variació en el nombre d'estats microscòpics del sistema.

La fig. 15 mostra la trajectòria fàsica en l'espai (x,p) d'una partícula que segueix un moviment 1D amb energia E = p2/2m dins d'una capsa de longitud 2a [de la Rubia i Brey. cap. 2]. Els segments de punts indiquen el canvi quasi instantani en el sentit del moment lineal p de la partícula en col·lidir elàsticament amb les parets de la capsa en x = ±a, considerades aquestes com a barreres «infinites» de potencial. Per simplicitat, s'ha omès la subdivisió en cel·les de la fig. 14 en la trajectòria de la fig. 15.


Figura 14


Figura 15

La fig. 16a representa l'espai fàsic per a un oscil·lador harmònic que segueix un moviment ID amb una energia entre E i E + δE, sent , la freqüència angular de l'oscil·lador. Un interval donat áx correspon a un nombre major de cel·les entre les dues el lipses si xA que si x ≈ 0. És més probable que l'oscil·lador es trobe al voltant de A (on la seua velocitat es molt petita) que al voltant de 0 (on la seua velocitat es màxima) [Reif, cap. 2].

La regió accessible de l'espai fàsic està formada per l'àrea compresa entre les dues el lipses de la fig. 16a, i conté un cert nombre de cel les (estats de la partícula) de volum arbitrari h0 corresponents a parells de valors (x, p). En una descripció clàssica no existeix una grandària mínima de cel·la, de manera que cada estat del sistema es pot representar per un volum arbitràriament petit i, en el límit, per un punt. En una descripció quàntica, però, l'espai fàsic està quan- titzat en cel·les de grandària mínima , sent-hi h la constant de Planck. Així, p. ex., si quantitzem l'energia d'un oscil·lador de manera que , l'àrea total (una el lipse) An tancada pel nivell d'energia n ve donada pel producte , de manera que l'espai fàsic queda dividit en cel·les d'àrea An+l - An = h (vegeu la fig. 16b).


Figura 16a


Figura 16b

La quantització de l'espai fàsic en cel·les de grandària definida h3N per a un sistema de N partícules en moviment 3D suposa obviar l'arbitrarietat de la descripció clàssica respecte a la grandària de cel·la, i permet obtindré la constant de Planck mitjançant la relació existent entre Ventropia absoluta i el nombre d'estats quàntics accessibles per a un sistema, tal com veurem en capítols posteriors. Històricament, aquesta determinació va contribuir a atorgar credibilitat a la Mecànica Quàntica, i fou realitzada uns pocs anys abans que Sommerfeld presentara les seues famoses regles de quantització [Gopal, cap. 2; Kittel i Kroemer, cap. 5].

5.2 Sistemes de molts graus de llibertat

L'enumeració dels estats accessibles per a un sistema amb molts graus de llibertat (diguem f ~ NA, on NA és el nombre d'Avogadro) mena a resultats a primera vista sorprenents. Considerarem a tall d'exemple el comportament del quocient format pel volum d'una escorça esfèrica de gruix s « R en un espai de/dimensions i el volum d'una hiperesfera de radi R en l'esmentat espai quan l'energia total del sistema canvia lleugerament [McQuarrie, problema 7–10]. El radi R ve donat per l'energia total E del sistema i el gruix s de l'escorça per la variació d'energia δE (vegeu la fig. 17).

Considerem dues hiperesferes en l'espai de f dimensions, una de radi R i una altra de radi R - s (vegeu la fig. 17). Els seus volums vénen donats per les expressions


Figura 17


de manera que el quocient entre el volum de l'escorça situada entre ambdues hiperesferes i el volum de la hiperesfera anterior és


ja que s « R. Aquest quocient és negligible en un espai amb f= 3, però no ho és quan f ~ NA, com és típic d'un sistema macroscopic. Per elaborar més aquest argument, suposem que les N ~ NA partícules del sistema només posseeixen moviments de translació que contribueixen a l'energia total en la forma


on pi és una de les tres components del moment lineal d'una de les partícules del sistema, de manera que f= 3NA. Els estats del sistema d'energia menor o igual que E es distribueixen, doncs, en el volum d'una hiperesfera de radi . Una variació δE en l'energia E del sistema condueix així a un canvi


en el radi de la hiperesfera, de manera que el quocient en l'eq. (36) és


L' eq. (39) mostra que un petitíssim augment relatiu en l'energia δE/E menor però de l'ordre de 2/NA provoca un augment important en el volum accessible (vegeu l'eq. 36) i, per tant, en el nombre d'estats accessibles al sistema de N partícules. El creixement espectacular12 del nombre d'estats accessibles per a un sistema amb la seua energia és una característica molt important dels sistemes amb molts graus de llibertat, i determina les propietats macroscopiques dels susdits sistemes, tal com veurem en el tema següent.

Gatunki i tagi

Ograniczenie wiekowe:
0+
Objętość:
1396 str. 1861 ilustracje
ISBN:
9788437094175
Właściciel praw:
Bookwire
Format pobierania:
Audio
Średnia ocena 4,2 na podstawie 262 ocen
Tekst, format audio dostępny
Średnia ocena 4,4 na podstawie 20 ocen
Audio
Średnia ocena 4,9 na podstawie 62 ocen
Tekst, format audio dostępny
Średnia ocena 4,7 na podstawie 53 ocen
Szkic, format audio dostępny
Średnia ocena 4,8 na podstawie 265 ocen
18+
Tekst
Średnia ocena 4,9 na podstawie 179 ocen
Szkic
Średnia ocena 5 na podstawie 58 ocen
Tekst
Średnia ocena 0 na podstawie 0 ocen