Czytaj książkę: «Энциклопедия будущего», strona 6

Czcionka:

Раздел 02. Гиперсвязь

Гиперсвязь

Гиперсвязь – это сверхсветовая (гиперсветовая) информационная коммуникация, характеризующаяся фактическим отсутствием задержки сигнала при его трансляции на любые дистанции. Если приёмник и передатчик разделяют миллиард километров, обычная радиоволновая связь доставит сообщение от второго первому примерно за час, а при расстояниях в световые годы ей и потребуются годы времени. Тогда как для её гипер разновидности нет совершенно никакой разницы, как далеко находится тот, с кем нужно вступить в контакт. В сотне ли он километров или сотне световых лет, быстрота прохождения сигнала до него будет одинаковой и составит буквально мгновенье. Дело в том, что работа гиперсветовых передающих систем основана на использовании так называемого эффекта «червячных дыр», т.е. на формировании проколов в пространстве, на связывании двух произвольных сколь угодно удалённых друг от друга точек вселенной между собой посредством межпространственного тоннеля (червоточины) конечной очень малой длины. Современная наука способна создавать такие тоннели исключительно с диаметрами квантового порядка, соизмеримыми с размерами атомов, потому их практическое применение ограничивается только сферой сверхсветового информационного обмена. Иначе говоря, гиперсвязью.

Основной недостаток гиперсветовой передачи данных заключается в её безумной дороговизне, которая вытекает из запредельной инженерно-технической сложности необходимого для этого оборудования. Вообще различают три вида гиперсвязи: планетарный, межпланетный и межзвёздный. Планетарный используют для коммуникаций в пределах одной планеты, межпланетный для осуществления информационного сообщения между соседствующими планетами одной и той же звёздной системы, межзвёздный соответственно соединяет в режиме реального времени двух абонентов, находящихся в разных звёздных системах. Самый дорогостоящий из них, естественно, третий – при расстояниях астрономического масштаба технические трудности в позиционировании и стабилизации червоточин становятся на порядки серьёзнее и требуют применения на порядки же более сложных технических решений. Представьте себе трёх-пяти этажное здание, под завязку набитое сверхдорогостоящими ультра высокотехнологичными приборами, так что там буквально нет ни одного лишнего свободного сантиметра. Подобное представление будет очень близким к тому, что являет собой стандартный полнофункциональный агрегат межзвёздной гиперсвязи. Посему она прерогатива исключительно государства, её не могут себе позволить ни самые богатейшие из миллиардеров, ни какие-либо бизнес-структуры, включая даже наикрупнейшие мегакорпорации. Если говорить максимально точно, последние позволить-то себе её могут, несколько сотен миллионов для них не такая уж и большая сумма, но это будет всего лишь нечто вроде единичного телефона, совершенно бессмысленная вещь, потребности в межзвёздном информационном обмене у топ бизнеса велики, их не покроешь ни одним «телефоном», ни даже тысячей, гораздо проще вкладываться в государственные системы гиперсветовой связи, поддерживать их на правах долевого партнёра и получать за это определённые преференции трафика, чем палить нереально безумные деньжищи на создание собственной аналогичной полноценной коммуникационной службы. Империя вынуждена обеспечивать межзвёздной гиперсвязью населённые планеты, чтобы объединить их в единое административное, правовое, информационное, экономическое, культурное и социальное пространство, дать администрации, бизнесу, культуре, науке и населению возможность свободно осуществлять контакты, она спонсирует и датирует сверхсветовое электронное сообщение между своими разделёнными глубоким космосом территориальными субъектами, причём не по прихоти текущей власти, а в соответствии с конституцией, по которой доступность оного всякому гражданину гарантируется законом. Т.е. оно, это сообщение, всегда есть. Создавать параллельно что-то своё, явно худшее по качеству, лишено для мегакорпораций здравого смысла.

По сравнению с межзвёздной, межпланетная гиперсвязь заметно менее дорога – продолжая эксплуатировать использованное выше образное сравнение, она уже не набитая оборудованием пятиэтажка, а лишь один занятый на 75-90% этаж. Но всё же и такое количество высокотехнологичных устройств по суммарной стоимости составит цифру в многие десятки миллионов (к слову, деньги в настоящее описываемому время стоят дороже, чем в иные времена, скажем, переводя их в эквивалент доллара начала 21-го века следует умножать приводимые суммы приблизительно на 9-12), посему она тоже не находит спроса в качестве средств личной телефонии, применяясь только в общегражданской сфере для обеспечения централизованной коммуникации между планетами, да и то не везде, она наличествует лишь в тех звёздных системах, где имеется более одной экономически развитой обжитой планеты, где экономически важен и востребован интенсивный межпланетный информационный обмен в реальном времени (необходимо понимать, межпланетная служба связи далеко не единичный коммуникатор, она должна обслуживать тысячи абонентов одновременно, т.е. тут речь идёт о цифрах финансовых затрат совсем иного порядка, чем «многие десятки миллионов»). К ней государство как правило не имеет непосредственного отношения, она может частично или полностью принадлежать местному бизнес сообществу, быть акционерной компанией, с контрольным пакетом у планетарных властей или нет, факт в том, что деятельность по её осуществлению и предоставлению так или иначе всегда всё равно регулируется законодательно, с защитой от монопольных ограничений и необоснованного завышения цен, и всегда она один единый коммуникационный узел на всю пару соединяемых ей планет, примеров множества конкурирующих между собой компаний на рынке услуг межпланетной гиперсвязи вы не найдёте, так же как и примеров частных систем межпланетной гиперсвязи, используемых только для себя, в личных целях отдельного физического или юридического лица.

Наиболее либеральна по стоимости из всех видов гиперсвязи безусловно планетарная её разновидность. При пребывании в пределах одной планеты гипер передатчик и приёмник образуют единую стационарную (неподвижную относительно друг друга, ну или условно-неподвижную, изменяющуюся в процессе движения континентов не более нескольких сантиметров в год) систему, не требующую применения сложных технологий позиционирования, фокусировки, привязки, здесь почти не проявляются проблемы с неустойчивостью червоточин, с шумами и искажением сигнала в них. В плане объёма необходимого оборудования это даже не половина этажа, а всего лишь одна небольшая квартира, благодаря чему планетарная гиперсвязь становится экономически вполне оправданной и рентабельной, превращается в стандарт качества современных услуг информационного сообщения, проще говоря, ныне она часть стандартной коммуникационной инфраструктуры. Для лучшего понимания, о чём идёт речь, приведём в пример хорошо знакомый нам атрибут быта – мобильный телефон. Сколь ни был бы он у нас подвинут, совершенен и дорогостоящ, сам по себе он бессмысленен, чтобы он мог связываться с другими телефонами, ему требуется техническая поддержка от целой масштабной индустрии, в которую входят и спутники, и оптоволоконные магистрали, и разнообразное приемное, трансляционное и усилительное оборудование. В настоящее описываемому время подобная инфраструктура тоже есть, разница лишь в том, что она при осуществлении планетарных коммуникаций опирается на узловые станции гиперсвязи, позволяющие минимизировать задержку сигнала при передаче его на значительные (сотни, тысячи, десятки тысяч километров) расстояния.

Таким образом, как видим, гиперсветовую связь нельзя назвать ни бытовой, ни массовой, нельзя сказать что она средство, при помощи которого люди повседневно общаются друг с другом, что у них есть персональные коммуникаторы на её основе, и т.п., однако как технология она так или иначе входит в жизнь каждого, без её частичного задействования удалённое общение большинства граждан не обходится. Значимость её для современной цивилизации огромна. Особенно выделим в этом ключе межзвёздную гиперсвязь. Её дороговизна вкупе с ограниченностью пропускной способности при крайне высоком спросе не позволяют применять её ни для осуществления видео-коммуникаций (исключение – правительственные звонки со статусом «особой важности»), ни даже аудио, она вообще не предполагает непосредственного общения «вживую», зато она основа государственного электронного почтового сообщения, каждому за мизерную плату доступно отправлять посредством неё текстовые письма – которые доходят до адресата иногда за минуты, иногда за часы, но не долее – это при том, что речь идёт о разделённых десятками и сотнями световых лет звёздных системах! Благодаря ей родственники, друзья, деловые партнёры легко могут поддерживать контакты в масштабах всей империи, не чувствуют себя изолированными друг от друга по отдельным космическим анклавам. Межпланетная гиперсвязь в плане цивилизационной важности заметно уступает межзвёздной, тем не менее и она весьма знаменательный совершенно необходимый миру описываемого периода инструмент, так как существенно повышает комфорт внутреннего информационного обмена в звёздных системах с двумя и более обжитыми планетами, жителям которых без неё пришлось бы в общении с инопланетными соседями довольствоваться отправкой видео, аудио и текстовых сообщений, с ожиданием ответа минутами. Там где она есть, они просто звонят друг другу и разговаривают вживую. Что до планетарной гиперсвязи, может она и не имеет особой цивилизационной значимости, в том смысле, что не является безусловно необходимой для выживания или развития человечества, но и она играет заметную роль в жизни общества, будучи востребована прежде всего в информационной развлекательной индустрии, в частности в сетевых видеоиграх, которые есть неотъемлемая часть современной культуры и жизни современного человека. Системы планетарной гиперсветовой коммуникации позволяют объединять информационное пространство планеты в единую виртуально-временную среду, без чего онлайн взаимодействие людей с разных полушарий или континентов в динамических играх во многом утратило бы смысл. Помимо вышесказанного отметим, межзвёздная гиперсвязь есть основа трансляции общеимперских центральных телеканалов, а так же в упрощённом максимально удешевлённом виде применяется в качестве стандартных систем подачи сигнала бедствия на звездолётах, о чём мы подробней расскажем чуть ниже. Военные используют гиперсвязь для решения достаточно широкого спектра задач: командование – для управления войсками и общей координации, центры информационно-аналитической поддержки – для усиления информационного обеспечения, оружейники – в космических системах слежения и мониторинга, в сенсорной поддержке сверхэффективного оружия, в качестве сегмента систем удалённого управления беспилотных боевых машин. Но военное применение, как говорится, совсем другая история, здесь мы её затрагивать не будем, подробней об армии см. соответствующий раздел ЭБ.

Укажем и ещё одно интересное свойство гиперсветовой связи – она разрушает релятивистские представления об относительности одновременности событий, становится возможным синхронизировать время в удалённых друг от друга движущихся на разных скоростях инерциальных системах. С её появлением некоторые релятивистские каноны были вынуждено пересмотрены.

Технические особенности гиперсвязи

Осуществление гиперсвязи можно обозначить как комплекс сложных технических задач, требующих каждая своего отдельного решения. Прежде всего необходимо конечно же сгенерировать саму червоточину, но кроме этого есть целый ряд и иных нужд, без удовлетворения которых никакой коммуникации не получится, а именно:

• Позиционирование червоточины – т.е. создание её выходной точки в определённых удалённых координатах пространства. Особенно затруднительно при межзвёздной гиперсвязи, когда приёмник и передатчик разделены сотнями триллионов километров, ведь координаты должны быть рассчитаны с точностью минимум до сантиметров, а в идеале не более долей миллиметра.

• Динамическое позиционирование червоточины – исключая планетарную гиперсвязь, у остальных двух её видов (межпланетной и межзвёздной) приёмник и передатчик всегда перемещаются относительно друг друга, на скоростях от десятков до сотен километров в секунду, так как и звёздные системы и планеты движутся, а последние ещё и вращаются вокруг своей оси. Требуется постоянно динамически изменять координаты выходного конца червоточины, дабы постоянно удерживать его на принимающем устройстве.

• Компенсация релятивистских искажений – характерно только для межзвёздной гиперсвязи. При значительной (сотни км/с) скорости движения приёмника и передатчика относительно друг друга так или иначе на пересылаемом сигнале начинают сказываться релятивистские эффекты, прежде всего сжатие пространства и замедление времени. Помимо прочего, оба указанных эффекта заметно усложняют динамическое позиционирование.

• Стабилизация червоточины – защита её от схлопывания, разрыва, спирального многомерного скручивания. Особенно проблематична при межзвёздной гиперсвязи. Форма червоточины никогда не бывает статичной, её тоннель постоянно стремится к деформации и искривлению, она растягивается и сжимается, её отдельные участки внутренних и внешних стенок могут двигаться относительно друг друга, изменяться по плотности и прочим физическим характеристикам, в них могут возникать вихревые, волновые, циклические и т.п. разрушительные явления. Наиболее неприятен квантовый резонанс, когда стенки тоннеля входят в состояние устойчивых колебаний на релятивистских частотах.

• Шумоподавление – при всех протекающих в червоточине процессах она и сама сильно «фонит», кроме того, на шумовую ситуацию в ней оказывают влияние внешние электромагнитные и гравитационные поля в пространстве между входной и выходной точками её тоннеля (сильнее всего это сказывается на межзвёздных коммуникациях). В результате она заметно искажает и заглушает пропускаемый через неё сигнал, делая поистине нетривиальной задачу выделить его.

• Передача сигнала – квантовые размеры диаметра тоннеля червоточины, разнообразные процессы в ней и нестабильность её формы затрудняют осуществление через неё информационного обмена. Поначалу, в прошлые эпохи, это делалось оптически – при помощи пропуска пучков фотонов. В настоящий описываемому момент технологии гиперсвязи тяготеют к пересылке данных посредством волновой интерференции на стенках тоннеля.

• Детектирование (выделение) сигнала – транслируемые фотоны засечь несложно, для этого сгодится любой грошовый оптический сенсор, однако пропускная способность (число бит, передаваемых в секунду) червоточины при световом способе информационного обмена крайне низка, для выделения же полезного сигнала, пересылаемого волновым воздействием на стенки её тоннеля, который имеет квантовые размеры и по сути представляет из себя квантовую сингулярность, требуется исключительно мощное высокотехнологичное детекторное оборудование запредельной чувствительности.

Существует два принципиально разных способа генерации червоточин: симметричный и асимметричный. Симметричный предполагает коммуникацию между двумя генерирующими приёмно-передающими системами, каждая из которых стабилизирует свой конец тоннеля червоточины – тот становится как бы пространственно привязанным к оборудованию с обоих сторон, благодаря чему не нуждается в динамическом позиционировании – с какой бы скоростью вступившие в контакт гипер устройства не двигались относительно друг друга, формируемый ими тоннель будет всегда оставаться строго меж ними, ведь они фактически и служат, условно говоря, его «выходными отверстиями». Неудобство здесь в двойной дороговизне – для осуществления связи требуется две полноценных передающих системы вместо одной. Асимметричный способ соответственно подразумевает пару передатчик-приёмник, обязанности по генерации, поддержанию и позиционированию червоточины в этом случае лежат исключительно на передатчике, приёмник тоже может пересылать через неё информацию на другой конец её тоннеля, но сам создавать и стабилизировать её неспособен, фактически являя собой просто детектор. Как следствие, удаётся организовать межпространственный информационный обмен заметно меньшими финансовыми затратами, однако возникает зависимость принимающей стороны от передающей – только последней доступно инициировать удалённое соединение, только она в состоянии «позвонить», но не наоборот. Кроме того, она сильно усложняется технически и вырастает в стоимости за счёт необходимости в оборудовании динамического позиционирования. Зато приёмник при асимметричной коммуникации может контактировать одновременно с разными передатчиками, со многими сразу, тогда как при симметричной передача данных всегда происходит строго между двумя абонентами – один на один.

Теперь остановимся чуть поподробней на проблеме позиционирования. Основная сложность с ним заключена в необходимости точно знать координаты приёмной системы, чтобы создать червоточину, чётко выходящую на её детектор. При расстояниях в десятки и сотни триллионов километров, с учётом того, что во вселенной всё движется – не только космические корабли, но и планеты и звёзды, произвести подобные расчёты с точностью до миллиметров чертовски сложно. Особенно, если скорость приёмника и передатчика относительно друг друга велика и на них начинают сказываться релятивистские эффекты. Казалось бы, раз симметричные технологии не нуждаются в позиционировании, это прекрасный выход из ситуации, пусть они и дороже асимметричных. Но так только кажется. Симметричная связь требует одновременного запуска генерации тоннелей червоточин от обоих участников коммуникации (ведь те надо стабилизировать с обоих концов), однако в релятивистских системах синхронность относительна, синхронизировать их можно лишь посредством гиперсвязи, иными словами, чтобы установить симметричное соединение, нам в общем случае предварительно придётся вступить в контакт асимметричным способом и приказать принимающей стороне подготовиться к симметричному подключению. Указанные сложности вовсе не обессмысливают симметричную связь, так или иначе она заметно устойчивее и обладает рядом других преимуществ, и тем не менее, без оборудования для динамического позиционирования, характерного только для асимметричных коммуникаций, установить её почти нереально (исключение – если принимающая сторона в постоянной готовности, всегда ожидает конкретного подключения). В результате гиперсвязь в любой её форме становится практически неосуществима для объектов с переменной траекторией, координаты которых нельзя точно вычислить. Проще говоря, звездолёт может вызвать по ней планету, а планета звездолёт как правило нет. Потому что текущие координаты планет посчитать не проблема, а координаты межзвёздного корабля попробуй высчитай, даже если известны его курс и скорость. Надо признать, и звездолёту не так-то просто рассчитать координаты планеты и приёмника на её поверхности с точностью до сантиметров. Всегда есть погрешность определения своей позиции, относительно которой пространственное положение других космических тел вычисляются, да и невозможно учесть все космологические и релятивистские факторы, влияющие на их и собственное движение. Однако существует методология, позволяющая гиперпередатчикам динамически наводиться на планетарные приёмники. Всякая обжитая (заселённая людьми) планета есть источник радиочастотных шумов, и кроме того всякая специально распространяет вокруг себя сигнал наведения – именно для облегчения гипер коммуникаций. Если даже передатчик корабля промахнётся, не важно, на километр или световой год, по характеру и интенсивности шума в червоточинах он сможет уточнить координаты приёмного устройства и открыть межпространственный микротоннель гиперсвязи снова на порядок ближе к оному. Так с каждым новым циклом наведения точность позиционирования увеличивается, пока не достигает нужного значения.

Наиболее определяющей характеристикой систем гиперкоммуникации считается число их каналов, т.е. количество одновременно поддерживаемых параллельных червоточин. Трудности со стабилизацией последних, разнообразные внутренние процессы в них и пропускная ограниченность делают идею об одноканальном коммуницировании абсурдной, потому как оно будет чрезвычайно нестабильным и слабоэффективным. Приемлемые общую устойчивость и пропускную ширину получают путём наращивания числа каналов. Таким образом всякий сверхсветовой передатчик содержит в своём составе множество микро-источников формирования проколов пространства, каждый из которых способен открывать и поддерживать свой собственный независимый канал, свою отдельную «червоточину». Высококачественные агрегаты гиперсвязи как правило имеют не менее нескольких десятков тысяч каналов параллельного приёма-передачи сигнала, самые дешёвые обеспечивают 6-10 канальное соединение.

Известно, что помимо «червоточинных» систем гиперсвязи бывают и другие, основанные на эффекте «квантовой запутанности» (связанности состояний двух фотонов или иных элементарных частиц независимо от расстояния между ними). Приборы «запутанной» коммуникации относительно дёшевы и вполне малогабаритны, однако при этом исключительно ненадёжны, неудобны, склонны к утрате функциональности, невообразимо слабы по пропускной способности, к тому же могут вступать в контакт лишь с одним конкретным парным устройством. Прикладного значения они не имеют.

Ograniczenie wiekowe:
16+
Data wydania na Litres:
16 grudnia 2020
Data napisania:
2018
Objętość:
2120 str. 1 ilustracja
Właściciel praw:
Автор
Format pobierania:
epub, fb2, fb3, ios.epub, mobi, pdf, txt, zip

Z tą książką czytają

Inne książki autora