Czytaj książkę: «Это база: Зачем нужна математика в повседневной жизни»

Czcionka:

Знак информационной продукции (Федеральный закон № 436-ФЗ от 29.12.2010 г.)


Переводчик: Наталья Лисова

Научный редактор: Константин Кноп

Редактор: Вячеслав Ионов

Издатель: Павел Подкосов

Руководитель проекта: Ирина Серёгина

Арт-директор: Юрий Буга

Ассистент редакции: Мария Короченская

Корректоры: Елена Воеводина, Ольга Петрова

Верстка: Андрей Фоминов

Дизайн обложки: Людмила Антипова


Все права защищены. Данная электронная книга предназначена исключительно для частного использования в личных (некоммерческих) целях. Электронная книга, ее части, фрагменты и элементы, включая текст, изображения и иное, не подлежат копированию и любому другому использованию без разрешения правообладателя. В частности, запрещено такое использование, в результате которого электронная книга, ее часть, фрагмент или элемент станут доступными ограниченному или неопределенному кругу лиц, в том числе посредством сети интернет, независимо от того, будет предоставляться доступ за плату или безвозмездно.

Копирование, воспроизведение и иное использование электронной книги, ее частей, фрагментов и элементов, выходящее за пределы частного использования в личных (некоммерческих) целях, без согласия правообладателя является незаконным и влечет уголовную, административную и гражданскую ответственность.


© Joat Enterprises, 2021

© Издание на русском языке, перевод, оформление. ООО «Альпина нон-фикшн», 2024

* * *

1
Непостижимая эффективность

Математический язык удивительно хорошо подходит для формулировки физических законов. Это чудесный дар, который мы не можем осмыслить и которого не заслуживаем. Нам остается лишь благодарить за него судьбу и надеяться, что и дальше сможем пользоваться им. В любом случае сфера его применения будет расширяться, принося нам не только радость, но и новые головоломные проблемы.

ЮДЖИН ВИГНЕР.
Непостижимая эффективность математики в естественных науках

Для чего нужна математика?

Что она дает нам в повседневной жизни?

Не так давно у нас были простые ответы на эти вопросы. Базовой арифметикой средний гражданин пользовался практически постоянно, хотя бы для проверки чека при совершении покупок. Элементарная геометрия была нужна плотникам. Геодезистам и штурманам требовалась также тригонометрия. Инженерное дело было немыслимо без дифференциального и интегрального исчисления.

Сегодня все иначе. Сумму чека подсчитывает кассовый терминал в супермаркете, он же учитывает скидки и начисляет налог с продаж. Мы же слушаем звуковые сигналы сканера штрихкодов, и если на каждую покупку приходится один сигнал, то считаем, что все в порядке. Многие профессии по-прежнему требуют обширных математических знаний, но даже там мы уже отдали большую часть математики на откуп электронным устройствам со встроенными алгоритмами.

Предмет, о котором я собираюсь вести речь, неосязаем. Трудно заметить то, что нельзя пощупать и ощутить.

Может показаться, что математика вышла из моды и устарела, но такой взгляд ошибочен. Без математики современный мир попросту развалился бы. В доказательство своего утверждения я покажу вам ее применение в политике и юриспруденции, в трансплантологии почек и в доставке заказов из супермаркета, в интернет-безопасности, в киношных спецэффектах и при изготовлении пружин. Мы увидим, что без математики немыслимы медицинские сканеры, цифровая фотография, широкополосные каналы связи и спутниковая навигация, она помогает нам предсказывать результаты климатических изменений, защищаться от террористов и интернет-хакеров.

Примечательно, что во многих компьютерных приложениях используется математический аппарат, созданный для совершенно иных целей. Готовя материалы для этой книги, я раз за разом натыкался на такие области применения математики, о которых даже не подозревал. Зачастую задействовались разделы, которые, казалось бы, не имеют практического применения, вроде заполняющих пространство кривых, кватернионов и топологии.

Математика – безграничная, исключительно креативная система представлений и методов. Она скрывается под поверхностью тех преобразующих технологий, которые делают XXI век с его видеоиграми, международным авиасообщением, системами спутниковой связи, компьютерами, интернетом и мобильными телефонами совершенно непохожим на предшествующую эпоху1. Поскребите какой-нибудь iPhone, и увидите яркий отблеск математики.

Пожалуйста, не воспринимайте это предложение буквально.

* * *

Многие склонны считать, что компьютеры с их почти чудесными возможностями делают математиков, да и саму математику, неактуальными. Но компьютеры вытесняют математиков не больше, чем микроскопы вытесняют биологов. Благодаря компьютерам мы теперь иначе занимаемся математикой, но в целом они лишь освобождают нас от монотонной работы. Они дают нам время подумать, помогают выискивать закономерности и добавляют в наш арсенал новый мощный инструмент, позволяющий развивать математику быстрее и эффективнее.

На самом деле главная причина того, что математика становится все более необходимой, как раз и состоит в повсеместном распространении дешевых и мощных компьютеров. Их появление открыло новые возможности для приложения математики к задачам реального мира. Методы, которые прежде не применялись из-за слишком большого объема вычислений, сегодня стали рутиной. Величайшие математики эпохи карандаша и бумаги развели бы руками в отчаянии при виде метода, требующего миллиарда вычислительных операций. Сегодня нас это не смущает, поскольку мы обладаем технологией, позволяющей проводить математические операции за доли секунды.

Математики давно находятся на острие компьютерной революции вместе с представителями бесчисленных других профессий. Вспомните хотя бы Джорджа Буля, который положил начало математической логике, составляющей основу современной компьютерной архитектуры. Вспомните Алана Тьюринга и универсальную машину, названную его именем, – математическую систему, способную вычислять все, что в принципе поддается вычислению. Вспомните Мухаммеда аль-Хорезми, чей алгебраический трактат, написанный примерно в 820 году, подчеркивал роль систематических вычислительных процедур, называемых теперь в его честь алгоритмами.

Большинство алгоритмов, которые определяют впечатляющие возможности компьютеров, прочно опираются на математику. Многие задействованные в них решения взяты, что называется, «с полки», из уже существующего запаса математических идей. Например, алгоритм PageRank компании Google, который дает количественную оценку значимости веб-сайта и является основой целой индустрии с многомиллиардным оборотом. Даже в наимоднейшем алгоритме глубокого обучения искусственного интеллекта используются давно испытанные и проверенные математические концепции, такие как матрицы и взвешенные графы. В одном из методов решения такой прозаической задачи, как поиск документа по конкретной цепочке символов, задействована математическая абстракция под названием «конечный автомат».

Участие математики в этих интереснейших разработках, как правило, упускается из виду. Так что в следующий раз, когда средства массовой информации вытащат на авансцену новую чудесную способность компьютеров, не забывайте, что за кулисами прячется математика, а также технические решения, физика, химия и психология и что без поддержки этих скрытых от глаз помощников цифровая суперзвезда вряд ли появилась бы на небосклоне.

* * *

Значимость математики в современном мире легко недооценить, потому что почти все, что связано с математикой, происходит за кулисами. Прогуляйтесь по улице любого города, и вы увидите ошеломляющее количество вывесок, которые кричат о важности банков, овощных магазинов, супермаркетов, модных бутиков, точек автосервиса и фастфуда, юристов, предметов старины, благотворительных организаций и тысячи других заведений и профессий. А вот бронзовой таблички, извещающей о том, что здесь консультирует математик, не найти. И ни один супермаркет не продаст вам немного «консервированной математики».

Однако стоит копнуть поглубже, и значимость математики быстро становится очевидной. Без уравнений аэродинамики невозможно конструировать самолеты. Навигация опирается на тригонометрию. Сегодня мы пользуемся навигацией совсем не так, как делал это Христофор Колумб, поскольку математика у нас встроена в электронные устройства и нам не приходится пользоваться пером, чернилами и навигационными таблицами, но базовые принципы остаются примерно теми же. Для разработки новых лекарств необходима статистика, без которой невозможно обеспечить их безопасность и эффективность. Спутниковая связь невозможна без глубокого понимания небесной механики. Прогнозирование погоды требует решения уравнений, описывающих движение атмосферных масс, количество содержащейся в них влаги, температуру и взаимодействие всех этих факторов. Можно привести тысячи разных примеров. Мы не замечаем, что в них задействована математика, ведь для использования результатов это знать необязательно.

Что же делает математику столь полезной для такого широкого набора видов человеческой деятельности?

Этот вопрос не нов. Еще в 1959 году физик Юджин Вигнер прочел в Нью-Йоркском университете лекцию2 под названием «Непостижимая эффективность математики в естественных науках». В ней он сосредоточился на науке, но то же самое можно было бы сказать и о непостижимой эффективности математики в сельском хозяйстве, медицине, политике, спорте… в общем, всюду, куда ни глянь. Сам Вигнер надеялся, что сфера применения математики будет расширяться. И она, безусловно, расширяется.

Ключевое слово непостижимая в названии лекции Вигнера вызывает удивление. Использование математики по большей части вполне постижимо, если, конечно, разобраться в том, какие методы задействованы в решении задачи или при создании гаджета. Например, совершенно логично, что инженеры применяют уравнения аэродинамики при конструировании самолетов. Для этого аэродинамика в свое время и создавалась. Математический аппарат, используемый в прогнозировании погоды, в значительной мере создавался именно с этой целью. Статистика уходит корнями в открытие глобальных закономерностей в данных о поведении людей. Математика, необходимая для конструирования вариофокальных объективов, необъятна, но по большей части она разрабатывалась как раз для оптики.

С точки зрения Вигнера, возможности математики в решении важных задач становятся непостижимыми при отсутствии связи между первоначальной целью разработки математического аппарата и его последующим использованием. Вигнер начал свою лекцию с истории, которую я перескажу своими словами.

Встретились два бывших одноклассника. Один из них, статистик, исследующий демографические тенденции, показал другому свою статью, которая начиналась со стандартной в статистике формулы нормального распределения, или колоколообразной кривой3. Он объяснил, что означают в ней различные символы – вот численность населения, вот среднее значение по выборке – и как при помощи этой формулы можно узнать численность населения, не пересчитывая всех поголовно. Его одноклассник заподозрил, что приятель шутит, но не был в этом уверен и начал расспрашивать об остальных обозначениях и в конечном итоге добрался до символа, который выглядел так: π.

– Что это за значок? Выглядит знакомо.

– Да, это число пи – отношение длины окружности к ее диаметру.

– Теперь я точно знаю, что ты меня разыгрываешь, – сказал приятель. – Разве окружность имеет какое-то отношение к численности населения?

Прежде всего надо отметить, что скептицизм приятеля совершенно понятен. Здравый смысл подсказывает, что две такие несопоставимые концепции просто не могут быть связаны. В конце концов, одна имеет отношение к геометрии, другая – к людям. Однако, несмотря на здравый смысл, такая связь существует. Колоколообразная кривая описывается формулой, в которой, как ни странно, фигурирует число π. И это не просто удобная аппроксимация, в ней действительно стоит число, в точности равное нашему старому знакомому π. Но причина, по которой это число фигурирует в формуле колоколообразной кривой, неочевидна даже для математиков, и вам потребуется углубленное знание дифференциального исчисления, чтобы понять, откуда оно берется, не говоря уже о том почему.

Позволю себе рассказать еще одну историю о числе π. Несколько лет назад мы делали ремонт в ванной на первом этаже. Спенсер, поразительно разносторонний мастер, который пришел укладывать плитку, узнал, что я пишу популярные книги по математике.

– У меня есть математическая задачка для вас, – сказал он. – Мне поручили уложить плитку на пол в круглой комнате, и теперь нужно узнать ее площадь, чтобы выяснить, сколько потребуется плитки. Была ведь какая-то формула, которую мы учили…

– Пи эр квадрат, – ответил я.

– Вот-вот, она самая!

Я напомнил ему, как нужно пользоваться этой формулой. Он ушел счастливый, получив ответ на задачу с плиткой, подписанный экземпляр одной из моих книг и вдобавок сделав открытие – оказывается, математика, которую изучали в школе, может быть, вопреки давним убеждениям, полезна в его нынешней профессии.

Разница между двумя историями очевидна. Во втором случае π фигурирует потому, что это число изначально было введено для решения задач именно такого рода. Это простая история об эффективности математики. В первом случае π тоже участвует в решении задачи, но его присутствие удивительно. Это история о непостижимой эффективности: о применении математической концепции в области, совершенно не связанной с ее происхождением.

* * *

В этой книге я не буду распространяться о разумных и понятных применениях моего предмета. Они достойны, они интересны, они точно такая же часть математического ландшафта, как все остальное, они ничуть не менее важны, но вряд ли заставят кого-нибудь удивиться и воскликнуть: «Вот это да!» Кроме того, они могут создать впечатление у власти предержащей, что единственный способ развития этой науки состоит в постановке задач перед математиками, которые будут изобретать способы их решения. В таких целенаправленных исследованиях нет ничего плохого, но они подобны драке одной рукой. История же раз за разом демонстрирует ценность второй руки – поразительные возможности человеческого воображения. Особую мощь математике придает сочетание двух способов мышления, которые дополняют друг друга.

Например, в 1736 году великий математик Леонард Эйлер обратился к забавной небольшой головоломке, связанной с кёнигсбергскими мостами. Он заинтересовался ею потому, что она, похоже, требовала геометрии нового типа, которая меняла обычные представления о длинах и углах. Но он никак не мог предвидеть, что в XXI веке предмет, начало которому положило его решение, поможет множеству пациентов найти почку для пересадки и тем самым сохранить жизнь. Для начала отметим, что даже идея пересадки почки показалась бы в то время чистой фантазией, а если и нет, то связь ее с той головоломкой точно выглядела бы нелепицей.

И кто мог бы вообразить, что открытие заполняющих пространство кривых – кривых, проходящих через каждую точку заполненного квадрата, – сможет помочь программе Meals on Wheels планировать маршруты доставки? Точно не математики, которые изучали эти вопросы в 1890-е годы и которых интересовало, как можно определить такие заумные концепции, как «непрерывность» и «измерение». Кстати, поначалу им пришлось объяснять, почему дорогие их сердцу математические представления могут оказаться ошибочными. Многие коллеги тогда осуждали все это мероприятие как ошибочное и вредное. Со временем все поняли, что бесполезно жить в блаженном неведении и считать, что все будет замечательно работать, если на самом деле не будет.

Не только математика прошлого используется таким образом. Методы трансплантации почки опираются на многочисленные современные расширения первоначального озарения Эйлера, к которым относятся, в частности, алгоритмы комбинаторной оптимизации, позволяющие делать наилучший выбор из громадного спектра возможностей. Среди множества математических методов, используемых в компьютерной анимации, немало таких, которым от роду насчитывается с десяток лет, а то и меньше. В качестве примера можно привести «пространство форм»1 – пространство бесконечной размерности, состоящее из кривых, которые считаются одной и той же кривой, если различаются только координатами. С их помощью анимационные последовательности становятся более гладкими и естественными на вид. Вездесущая гомология – еще одно недавнее изобретение – появилась в результате того, что специалисты по чистой математике хотели вычислять сложные топологические инварианты, которые подсчитывают число многомерных отверстий в геометрических фигурах. Помимо прочего, их метод позволил сетям датчиков сигнализации обеспечивать полное покрытие территории при защите зданий или военных баз от вторжения. Абстрактные концепции из алгебраической геометрии – «суперсингулярные изогенные графы» – могут сохранять безопасность интернет-коммуникаций, даже когда для взлома начнут применяться квантовые компьютеры. Эти устройства настолько новы, что существуют пока только в рудиментарном виде, но они разнесут современные криптосистемы в пух и прах, если удастся полностью реализовать их потенциал.

Математика не просто время от времени преподносит нам подобные сюрпризы. Это уже стало для нее обыкновением. Мало того, с точки зрения многих математиков, эти сюрпризы и есть самые интересные варианты применения их дисциплины – и главное основание для того, чтобы считать математику именно дисциплиной, а не разрозненным набором фокусов, индивидуальным для каждого типа задач.

По словам Вигнера, «чрезвычайная эффективность математики в естественных науках есть нечто загадочное, не поддающееся рациональному объяснению». Конечно, это правда, что математика выросла в первую очередь из физических задач, но Вигнера удивляла вовсе не эффективность дисциплины в тех областях, для которых она была разработана. Его ставила в тупик эффективность математики в областях, никак на первый взгляд с нею не связанных. Дифференциальное и интегральное исчисление выросло из исследований Исаака Ньютона, посвященных движению планет, поэтому не особенно удивительно, что оно помогает понять, как движутся планеты. Удивительно, однако, то, что дифференциальное исчисление позволяет осуществлять статистическую оценку народонаселения, как в маленьком примере Вигнера, объяснять изменения количества рыбы, выловленной в Адриатическом море во время Первой мировой войны4, управлять ценообразованием опционов в финансовом секторе, помогать инженерам конструировать пассажирские самолеты или быть жизненно важным для телекоммуникаций. И все потому, что дифференциальное исчисление изначально не предназначалось ни для одной из перечисленных целей.

Вигнер был прав. То, как математика раз за разом появляется без приглашения в физике, а также в большинстве других областей человеческой деятельности – настоящая загадка. В соответствии с одним из предположений, Вселенная «состоит» из математики и люди всего лишь понемногу открывают для себя этот основной ее элемент. Я не собираюсь с этим спорить, но, если такое объяснение верно, оно заменяет одну загадку на другую, еще более глубокую. Почему наша Вселенная состоит из математики?

* * *

На более прагматичном уровне можно утверждать, что математика обладает рядом свойств, которые помогают ей стать непостижимо эффективной по Вигнеру. Я согласен, что одно из них – ее многочисленные связи с естественными науками, которые приносят в мир человека преобразующие технологии. Многие великие математические инновации в самом деле родились в процессе естественно-научных исследований. Другие уходят корнями в потребности человека. Появление цифр обусловила потребность ведения хозяйственного учета (сколько у меня овец?). Геометрия означает «измерение земли» и изначально была тесно связана с налогообложением земель, а в Древнем Египте еще и со строительством пирамид. Тригонометрия возникла из астрономии, навигации и картографии.

Однако этого мало для адекватного объяснения, потому как другие великие математические инновации связаны не с естественно-научными исследованиями или потребностями людей. Простые числа, комплексные числа, абстрактная алгебра, топология – главной мотивацией для открытия/изобретения подобных инструментов было человеческое любопытство и ощущение закономерности. Это вторая причина, по которой математика так эффективна: математики используют ее для поиска закономерностей и выявления внутренней структуры. Они ищут красоту, красоту не формы, а логики. Ньютону, пытавшемуся понять движение планет, решение пришло, когда он стал думать как математик и искать более глубокие закономерности в груде необработанных астрономических данных. Тогда-то он и предложил свой закон всемирного тяготения5. Многие величайшие математические идеи вообще не связаны с реальным миром. Пьер де Ферма, юрист и математик-любитель XVII века, сделал ряд фундаментальных открытий в теории чисел: открыл глубокие закономерности в поведении обычных целых чисел. Потребовалось три столетия, чтобы его работы в этой области нашли практическое применение, но сегодня без них были бы невозможны коммерческие транзакции, которые являются движущей силой интернета.

Еще одно свойство математики, которое с конца XIX века становится все более очевидным, это общность. У различных математических структур много общего. В элементарной алгебре действуют такие же правила, что и в арифметике. Все виды геометрии (евклидова, проективная, неевклидова и даже топология) тесно связаны друг с другом. Это скрытое единство можно сделать явным, если с самого начала работать с обобщенными структурами, которые подчиняются конкретным правилам. Достаточно разобраться в общих принципах, и все конкретные примеры станут очевидными. Это позволяет сберечь немало сил, которые иначе расходовались бы понапрасну – ведь пришлось бы делать, по существу, одно и то же много раз с использованием незначительно различающихся языков. Однако у такого подхода есть один недостаток: как правило, он делает дисциплину более абстрактной. Вместо того чтобы говорить о знакомых вещах, таких как числа, обобщенный подход имеет дело с чем-то, подчиняющимся тем же правилам, что и числа, а называться это может, например, «нётерово кольцо», «тензорная категория» или «топологическое векторное пространство». Когда абстракции такого рода доводятся до крайности, трудно понять, что эти общности собой представляют, не говоря уже о том, как их использовать. Тем не менее они настолько полезны, что наш мир уже не смог бы без них функционировать. Хотите Netflix? Кто-то должен произвести математический расчет. Это не волшебство, это только кажется волшебством.

Четвертое свойство математики, очень важное для нашего рассказа, – возможность ее переноса. Это следствие ее общности и причина, по которой необходима такая высокая степень абстракции. Безотносительно задачи, давшей повод для разработки, любая математическая концепция или метод обладает таким уровнем общности, который делает его применимым для решения совершенно других задач. В результате любая задача, которую можно переформулировать и уложить в подходящие рамки, становится решаемой. Простейший и самый эффективный способ создания переносимой математики – заложить возможность переноса в проект с самого начала, сделав общность явной.

Последние 2000 лет математика черпает вдохновение из трех основных источников: процессов в природе, потребностей общества и склонности к поиску закономерностей, свойственной человеческому разуму. На этих трех столпах держится все здание. Настоящее чудо, что, несмотря на многообразие мотиваций, математика полностью едина. Каждая ее отрасль, каковы бы ни были ее истоки и цели, тесно связана с остальными отраслями, и эти взаимосвязи становятся все более прочными и все более сложными.

Это указывает на пятую причину невероятно высокой эффективности математики, на ее единство. А рядом идет и шестая причина, которую я иллюстрирую множеством примеров: ее разнообразие.

Реальность, красота, общность, возможность переноса, единство, разнообразие. В целом все это обусловливает полезность.

Да, все очень просто.

1.В 2012 году аудиторская компания Deloitte провела исследование на тему «Измерение экономической пользы математических исследований в Великобритании». На тот момент научной деятельностью в сферах теоретической и прикладной математики, статистики и информатики занимались 2,8 млн человек. Суммарный вклад математических наук в экономику Великобритании (валовая добавленная стоимость) в том году составил £208 млрд – чуть меньше £250 млрд в ценах 2020 года, или около $300 млрд. Получается, что вклад 2,8 млн человек, то есть менее чем 10 % британского занятого населения, в экономику составил 16 %. Крупнейшими секторами были банковское дело, промышленные исследования и разработки, вычислительные услуги, аэрокосмическая отрасль, фармацевтика, архитектура и строительство. В качестве примеров в отчете названы, в частности, смартфоны, прогнозирование погоды, здравоохранение, кинематографические спецэффекты, улучшение спортивных показателей, национальная безопасность, борьба с эпидемиями, безопасность сетевых данных и повышение эффективности промышленного производства.
3.Сама формула выглядит так:
  где x – значение случайной переменной, μ – среднее, а σ – среднеквадратичное отклонение.
1.Термин введен британским статистиком Дэвидом Кендаллом. Другое название – «пространство неряшливости» – используется специалистами по автоматическому распознаванию рукописного текста. – Прим. науч. ред.
4.Вито Вольтерра был математиком и физиком. В 1926 году за его дочерью ухаживал морской биолог Умберто Д'Анкона, и позже они поженились. Д'Анкона обнаружил, что во время Первой мировой войны доля хищной рыбы (акула, скат, рыба-меч), вылавливаемой рыбаками, повысилась несмотря на то, что в целом рыболовство захирело. Вольтерра создал на основе дифференциального исчисления простую модель того, как меняется со временем численность хищников и добычи, из которой следовало, что система переживает повторяющиеся циклы, где взлеты численности хищников чередуются с обвалами численности добычи. Главное, что в среднем численность хищников увеличивается пропорционально сильнее, чем численность добычи.
5.Несомненно, Ньютон пользовался также физической интуицией, и историки сообщают нам, что он, вероятно, позаимствовал идею у Роберта Гука, но ограниченность и узкая специализация еще никому не шли на пользу.
Ograniczenie wiekowe:
12+
Data wydania na Litres:
26 sierpnia 2024
Data tłumaczenia:
2024
Data napisania:
2021
Objętość:
421 str. 69 ilustracje
ISBN:
9785002234196
Format pobierania: