Czytaj tylko na LitRes

Książki nie można pobrać jako pliku, ale można ją czytać w naszej aplikacji lub online na stronie.

Основной контент книги Meta-heuristic and Evolutionary Algorithms for Engineering Optimization
Tekst PDF

Objętość 307 stron

0+

Meta-heuristic and Evolutionary Algorithms for Engineering Optimization

Czytaj tylko na LitRes

Książki nie można pobrać jako pliku, ale można ją czytać w naszej aplikacji lub online na stronie.

617,14 zł

O książce

A detailed review of a wide range of meta-heuristic and evolutionary algorithms in a systematic manner and how they relate to engineering optimization problems

This book introduces the main metaheuristic algorithms and their applications in optimization. It describes 20 leading meta-heuristic and evolutionary algorithms and presents discussions and assessments of their performance in solving optimization problems from several fields of engineering. The book features clear and concise principles and presents detailed descriptions of leading methods such as the pattern search (PS) algorithm, the genetic algorithm (GA), the simulated annealing (SA) algorithm, the Tabu search (TS) algorithm, the ant colony optimization (ACO), and the particle swarm optimization (PSO) technique.

Chapter 1 of Meta-heuristic and Evolutionary Algorithms for Engineering Optimization provides an overview of optimization and defines it by presenting examples of optimization problems in different engineering domains. Chapter 2 presents an introduction to meta-heuristic and evolutionary algorithms and links them to engineering problems. Chapters 3 to 22 are each devoted to a separate algorithm— and they each start with a brief literature review of the development of the algorithm, and its applications to engineering problems. The principles, steps, and execution of the algorithms are described in detail, and a pseudo code of the algorithm is presented, which serves as a guideline for coding the algorithm to solve specific applications. This book:

Introduces state-of-the-art metaheuristic algorithms and their applications to engineering optimization; Fills a gap in the current literature by compiling and explaining the various meta-heuristic and evolutionary algorithms in a clear and systematic manner; Provides a step-by-step presentation of each algorithm and guidelines for practical implementation and coding of algorithms; Discusses and assesses the performance of metaheuristic algorithms in multiple problems from many fields of engineering; Relates optimization algorithms to engineering problems employing a unifying approach. Meta-heuristic and Evolutionary Algorithms for Engineering Optimization is a reference intended for students, engineers, researchers, and instructors in the fields of industrial engineering, operations research, optimization/mathematics, engineering optimization, and computer science.

OMID BOZORG-HADDAD, PhD, is Professor in the Department of Irrigation and Reclamation Engineering at the University of Tehran, Iran.

MOHAMMAD SOLGI, M.Sc., is Teacher Assistant for M.Sc. courses at the University of Tehran, Iran.

HUGO A. LOÁICIGA, PhD, is Professor in the Department of Geography at the University of California, Santa Barbara, United States of America.

Gatunki i tagi

Zaloguj się, aby ocenić książkę i zostawić recenzję
Książka Omid Bozorg-Haddad, Mohammad Solgi i in. «Meta-heuristic and Evolutionary Algorithms for Engineering Optimization» — czytaj online na stronie. Zostaw komentarze i recenzje, głosuj na ulubione.
Ograniczenie wiekowe:
0+
Data wydania na Litres:
21 czerwca 2018
Objętość:
307 str.
ISBN:
9781119387077
Całkowity rozmiar:
3.0 МБ
Całkowita liczba stron:
307
Wydawca:
Właściciel praw:
John Wiley & Sons Limited
Audio
Średnia ocena 3,9 na podstawie 70 ocen
Tekst, format audio dostępny
Średnia ocena 4,8 na podstawie 189 ocen
Tekst, format audio dostępny
Średnia ocena 4,7 na podstawie 691 ocen
Tekst
Średnia ocena 4,9 na podstawie 479 ocen
Tekst
Średnia ocena 4,9 na podstawie 1227 ocen
Audio
Średnia ocena 4,9 na podstawie 262 ocen
Tekst, format audio dostępny
Średnia ocena 4,7 na podstawie 108 ocen