Читайте только на Литрес

Książki nie można pobrać jako pliku, ale można ją czytać w naszej aplikacji lub online na stronie.

Основной контент книги Multi-Agent Coordination
Tekst

Czas trwania książki 887 stron

0+

Multi-Agent Coordination

A Reinforcement Learning Approach
Читайте только на Литрес

Książki nie można pobrać jako pliku, ale można ją czytać w naszej aplikacji lub online na stronie.

594 zł

O książce

Discover the latest developments in multi-robot coordination techniques with this insightful and original resource Multi-Agent Coordination: A Reinforcement Learning Approach delivers a comprehensive, insightful, and unique treatment of the development of multi-robot coordination algorithms with minimal computational burden and reduced storage requirements when compared to traditional algorithms. The accomplished academics, engineers, and authors provide readers with both a high-level introduction to, and overview of, multi-robot coordination, and in-depth analyses of learning-based planning algorithms. You'll learn about how to accelerate the exploration of the team-goal and alternative approaches to speeding up the convergence of TMAQL by identifying the preferred joint action for the team. The authors also propose novel approaches to consensus Q-learning that address the equilibrium selection problem and a new way of evaluating the threshold value for uniting empires without imposing any significant computation overhead. Finally, the book concludes with an examination of the likely direction of future research in this rapidly developing field. Readers will discover cutting-edge techniques for multi-agent coordination, including: An introduction to multi-agent coordination by reinforcement learning and evolutionary algorithms, including topics like the Nash equilibrium and correlated equilibrium Improving convergence speed of multi-agent Q-learning for cooperative task planning Consensus Q-learning for multi-agent cooperative planning The efficient computing of correlated equilibrium for cooperative q-learning based multi-agent planning A modified imperialist competitive algorithm for multi-agent stick-carrying applications Perfect for academics, engineers, and professionals who regularly work with multi-agent learning algorithms, Multi-Agent Coordination: A Reinforcement Learning Approach also belongs on the bookshelves of anyone with an advanced interest in machine learning and artificial intelligence as it applies to the field of cooperative or competitive robotics.

Gatunki i tagi

Zaloguj się, aby ocenić książkę i dodać recenzję
Książka Amit Konar, Arup Kumar Sadhu «Multi-Agent Coordination» — czytaj online na stronie. Zostaw komentarze i recenzje, głosuj na ulubione.
Ograniczenie wiekowe:
0+
Objętość:
887 str. 896 иллюстраций
ISBN:
9781119699026
Wydawca:
Właściciel praw:
John Wiley & Sons Limited
Szkic
Средний рейтинг 5 на основе 211 оценок
Audio
Средний рейтинг 4,2 на основе 929 оценок
Audio
Средний рейтинг 4,6 на основе 998 оценок
Szkic
Средний рейтинг 4,8 на основе 517 оценок
Audio
Средний рейтинг 4,8 на основе 5147 оценок
Tekst
Средний рейтинг 4,9 на основе 425 оценок
Tekst, format audio dostępny
Средний рейтинг 4,7 на основе 7093 оценок
Tekst, format audio dostępny
Средний рейтинг 4,9 на основе 661 оценок
Audio
Средний рейтинг 4,8 на основе 26 оценок
Tekst PDF
Средний рейтинг 0 на основе 0 оценок
Tekst
Средний рейтинг 0 на основе 0 оценок
Tekst PDF
Средний рейтинг 0 на основе 0 оценок