Czytaj książkę: «Интеллект завтрашнего дня: Путеводитель по миру искусственного интеллекта»

Czcionka:

Дизайнер обложки Искусственный Интеллект

© Алексей Меретин, 2024

© Искусственный Интеллект, дизайн обложки, 2024

ISBN 978-5-0062-7714-4

Создано в интеллектуальной издательской системе Ridero

Интеллект Завтрашнего Дня: Путеводитель по Миру Искусственного Интеллекта


Введение

Добро пожаловать в увлекательный и разнообразный мир искусственного интеллекта – технологии, которая обещает стать одним из величайших достижений человечества. «Интеллект Завтрашнего Дня» предназначен для того, чтобы стать вашим надежным путеводителем по этой динамично развивающейся области, открывающей новые горизонты возможностей и вызовов.


ИИ уже сейчас трансформирует нашу повседневную жизнь, работу, образование и развлечения, предлагая новые инструменты для решения сложнейших задач – от диагностики заболеваний до управления глобальными финансовыми системами. Но что на самом деле стоит за этими мощными алгоритмами? Как они работают, и что они могут (и не могут) делать? Какие этические и социальные вопросы они порождают? И, что самое важное, как мы можем подготовиться к будущему, в котором ИИ будет играть центральную роль?


В этой книге мы исследуем ключевые концепции и технологии, лежащие в основе ИИ, включая машинное обучение, нейронные сети, глубокое обучение и обработку естественного языка. Мы рассмотрим как практические приложения ИИ, так и теоретические обсуждения, связанные с его будущим развитием. Кроме того, мы обсудим важность данных в обучении ИИ, а также вопросы безопасности, конфиденциальности и этики, которые сопровождают его внедрение в общество.


«Интеллект Завтрашнего Дня» предназначен для широкого круга читателей – от студентов и специалистов в области технологий до предпринимателей и любознательных энтузиастов, стремящихся понять и принять участие в развитии ИИ. Независимо от того, ищете ли вы глубокое понимание технических аспектов ИИ или хотите узнать о его более широком влиянии на наше будущее, эта книга предоставит вам знания, необходимые для навигации по миру искусственного интеллекта.


Присоединяйтесь к нам в этом путешествии по пути ИИ, где мы раскроем его тайны и исследуем его потенциал для создания мира завтрашнего дня.

1. Введение в искусственный интеллект


– Определение искусственного интеллекта

Искусственный интеллект – это область компьютерных наук, которая занимается созданием машин, способных выполнять задачи, требующие человеческого интеллекта. Это включает в себя способность к обучению, пониманию, рассуждению, планированию, восприятию и обработке естественного языка.


Основные характеристики искусственного интеллекта:


1. Обучение (Learning): Способность ИИ улучшать свои знания или поведение на основе опыта или данных.


2. Рассуждение (Reasoning): Способность ИИ применять логические правила к набору данных, чтобы сделать выводы или решить проблемы.


3. Самосознание (Self-awareness): В более продвинутых формах ИИ, это способность понимать свои собственные состояния и процессы.


4. Планирование (Planning): Способность ИИ устанавливать цели и разрабатывать стратегии для достижения этих целей.


5. Восприятие (Perception): Способность ИИ интерпретировать различные типы входных данных, такие как визуальные изображения, звуковые сигналы и текст.


6. Обработка естественного языка (Natural Language Processing, NLP): Способность ИИ понимать, интерпретировать и генерировать человеческий язык.


Искусственный интеллект может быть классифицирован по типу:


– Слабый ИИ (Narrow AI): Системы, разработанные для выполнения конкретных задач без обладания общими когнитивными способностями. Примеры включают рекомендательные системы, распознавание речи и обработку изображений.


– Сильный ИИ (General AI): Гипотетические системы, обладающие способностью понимать, мыслить и действовать так же, как человек в любой ситуации. Сильный ИИ еще не создан и остается предметом научных исследований.


ИИ применяется во многих областях, включая медицину, образование, финансы, робототехнику, транспорт и многие другие, и продолжает развиваться, предлагая новые возможности для автоматизации и улучшения человеческой деятельности.

– Краткая история ИИ


История искусственного интеллекта началась в середине 20-го века, хотя фундаментальные идеи и философские вопросы о мыслящих машинах возникли ещё в древности. Вот краткий обзор ключевых моментов в истории ИИ:


1950-е годы: Рождение ИИ

– 1950: Алан Тьюринг опубликовал статью «Вычислительные машины и интеллект», в которой предложил идею теста Тьюринга для оценки способности машины имитировать человеческий интеллект.

– 1956: На конференции в Дартмутском колледже термин «искусственный интеллект» был впервые использован Джоном Маккарти. Это событие часто считается официальным началом ИИ как научной дисциплины.


1960-е годы: Энтузиазм и первые успехи

– Исследователи ИИ добились прогресса в создании программ, способных решать алгебраические задачи и доказывать теоремы. Программа ELIZA, созданная Джозефом Вейценбаумом, смогла имитировать диалог психотерапевта и пациента.


1970-е годы: «Зима ИИ»

– После первоначального энтузиазма последовало разочарование из-за завышенных ожиданий и ограниченных результатов, что привело к сокращению финансирования исследований ИИ.


1980-е годы: Возрождение ИИ

– Возрождение интереса к ИИ благодаря развитию экспертных систем, которые могли имитировать решение задач, требующих специализированных знаний.


1990-е годы: Интернет и машинное обучение

– Рост интернета и доступ к большим данным способствовали развитию машинного обучения. ИИ начал использоваться в поисковых системах и для анализа данных.


2000-е годы: Большие данные и глубокое обучение

– Прорывы в области глубокого обучения привели к значительным улучшениям в распознавании речи и изображений. ИИ стал использоваться в различных приложениях, от рекомендательных систем до автономных автомобилей.


2010-е годы: ИИ в повседневной жизни

– ИИ стал неотъемлемой частью повседневной жизни, от виртуальных помощников до персонализированных новостных лент. Программы ИИ, такие как AlphaGo от DeepMind, демонстрируют превосходство над человеком в сложных играх.


2020-е годы и далее: Этика и будущее ИИ

– Вопросы этики и безопасности ИИ становятся всё более актуальными. Исследования сосредоточены на создании ответственного и прозрачного ИИ, а также на изучении потенциала ИИ для решения глобальных проблем.


История ИИ – это история чередования периодов оптимизма и скептицизма, инноваций и прорывов, которая продолжает развиваться с каждым десятилетием.

– Основные концепции и терминология

В области искусственного интеллекта существует множество концепций и терминов, которые помогают описать различные аспекты этой широкой и многофасетной дисциплины. Вот некоторые из основных концепций и терминов:


1. Алгоритм машинного обучения (Machine Learning Algorithm): Процедура или формула для анализа данных и принятия решений на основе этих данных.


2. Обучение с учителем (Supervised Learning): Тип машинного обучения, при котором модель обучается на основе входных данных и соответствующих им выходных данных, предоставленных человеком.


3. Обучение без учителя (Unsupervised Learning): Тип машинного обучения, при котором модель ищет скрытые структуры в данных без явных инструкций о том, что представляют собой эти структуры.


4. Обучение с подкреплением (Reinforcement Learning): Тип машинного обучения, при котором агент учится принимать решения, выполняя действия в среде и получая положительные или отрицательные награды.


5. Нейронная сеть (Neural Network): Вычислительная модель, вдохновленная структурой мозга, состоящая из слоев нейронов, которые обрабатывают данные и передают сигналы.


6. Глубокое обучение (Deep Learning): Подмножество машинного обучения, использующее сложные нейронные сети с множеством слоев (глубокие нейронные сети) для анализа данных.


7. Искусственный нейрон (Artificial Neuron): Основная вычислительная единица нейронной сети, имитирующая работу биологического нейрона.


8. Функция активации (Activation Function): Функция в искусственном нейроне, которая определяет, насколько сильно будет активирован нейрон в ответ на входные данные.


9. Обратное распространение (Backpropagation): Метод обучения нейронных сетей, при котором ошибка выходных данных используется для корректировки весов сети.


10. Переобучение (Overfitting): Ситуация, когда модель машинного обучения слишком точно подстроена под тренировочные данные и плохо работает на новых данных.


11. Регуляризация (Regularization): Техники, используемые для предотвращения переобучения модели путем наказания модели за слишком сложные или большие веса.


12. Классификация (Classification): Задача машинного обучения, при которой модель предсказывает категорию входных данных.


13. Регрессия (Regression): Задача машинного обучения, при которой модель предсказывает непрерывное значение на основе входных данных.


14. Кластеризация (Clustering): Задача машинного обучения, при которой модель группирует данные на основе сходства между ними.


15. Искусственный интеллект общего назначения (AGI, Artificial General Intelligence): Теоретическая форма ИИ, которая может понимать, учиться и применять знания в широком спектре задач так же, как это делает человек.


16. Экспертная система (Expert System): Программа, которая имитирует решение задач в определенной области знаний, используя логические правила или данные.


Это лишь некоторые из множества терминов и концепций, используемых в искусственном интеллекте, и каждый из них открывает дверь в глубокую и интересную область исследований.

Darmowy fragment się skończył.

Ograniczenie wiekowe:
12+
Data wydania na Litres:
17 kwietnia 2024
Objętość:
48 str. 20 ilustracje
ISBN:
9785006277144
Format pobierania:
Audio
Średnia ocena 4,2 na podstawie 408 ocen
Szkic, format audio dostępny
Średnia ocena 4,7 na podstawie 91 ocen
Szkic
Średnia ocena 4,2 na podstawie 31 ocen
Tekst, format audio dostępny
Średnia ocena 4,3 na podstawie 511 ocen
Tekst, format audio dostępny
Średnia ocena 5 na podstawie 473 ocen