Scavenger. Космический мусор

Tekst
0
Recenzje
Przeczytaj fragment
Oznacz jako przeczytane
Scavenger. Космический мусор
Czcionka:Mniejsze АаWiększe Aa

© Алексей Лепихов, 2021

ISBN 978-5-0051-1088-6

Создано в интеллектуальной издательской системе Ridero

Орбитальная система

ликвидации космического мусора

Scavenger

(маркетинговая концепция)

ВВЕДЕНИЕ

В 2011 году работа была представлена на конкурс в рамках международной школьной «Космической олимпиады».

Работа является маркетингово-концептуальной и не включает научно-техническое описание разработок. Рисунки не имеют строгой привязки к тексту. В 2020 году добавлены рисунки конструкций опубликованные позднее.


Цель работы. Выяснить, что мешает международному сообществу развернуть полномасштабную программу по ликвидации космического мусора. Предложить своё решение проблемы в виде цельной системы методов и средств.

Методы и приёмы:

Маркетинговое интернет-исследование с помощью информации размещенной на сайтах общей научно-космической направленности. Чтобы осознать суть проблемы потребовалось собрать максимально возможное количество данных о предложенных в настоящее время разработках и коротко их описать.

Полученные данные:

В основном, всё сводится к книгам по математическому моделированию и теоретическим статьям о конструкциях по захвату и транспортировке космического мусора. Иногда говорится об опытных образцах, но не о проведённых испытаниях. Специальная литература и информация о концептуальных решениях проблемы не обнаружены. Иллюстративный материал, в большинстве случаев, отсутствует или не содержит конкретики.

Выводы:

Большинство работающих над проблемой космического мусора сосредоточены на узконаправленных разработках.

Одним нужны средства для моделирования, другим – для наземного слежения, третьим – на разработку конструкций, четвёртые лоббируют интересы первых трёх, пятых назначили руководить остальными и выпускать отчёты. Необходима сплоченная международная команда менеджмента в рамках национальных программ государств и под присмотром их правительств.

В работе предложено:

Договориться об общей концепции борьбы с космическим мусором. Найти реальные способы мониторинга помимо математического моделирования и наземного наблюдения. Разработать средства маркировки объектов и средства оперативного анализа получаемых данных об объектах. Определиться с набором конструкций захвата и транспортировки мусора, описать способы их работы. Разработать методологические материалы для системы в целом. Создать современную научно-производственную базу.


МАРКЕТИНГОВОЕ            ИНТЕРНЕТ – ИССЛЕДОВАНИЕ

Проблемы ликвидации космического мусора, существующие и перспективные методы, мониторинг

Космический мусор (КМ) – все объекты, кроме активных космических систем (АС), которые находятся на околоземных орбитах или возвращаются в атмосферу.

Это естественные объекты (космические тела, их обломки, пыль) и искусственные объекты (фрагменты спутников, ракет, станций, а так же спутники и системы, закончившие активное существование).

Опасность КМ: 1) столкновение с АС (угроза жизни космонавтов и работоспособности систем); 2) неполное сгорание и химическое загрязнение продуктами сгорания при входе в атмосферу (угроза жизни и здоровью населения, угроза разрушения наземных объектов); 3) столкновение объектов (каскадный эффект).

Факторы загрязнения (термин), влияющие на степень загрязнения и на его последствия, следующие: время нахождения на орбите, траектория, высота орбиты, наклон орбиты, размер, масса, скорость, химический и биологический состав, радиоактивность, районы особенно выраженного влияния различных техногенных, космических и земных факторов, другое.



Проблема: нет достаточного мониторинга объектов КМ (всестороннего, точного, непрерывного и в реальном времени) по всем факторам загрязнения.

В настоящее время мониторинг КМ осуществляется небольшим, для глобального решения проблемы, числом международных наземных станций с попыткой объединить их в функциональные сети (IGMASS/МАКСиМ, Space Surveillance, АСПОС и др.), так как способы мониторинга достаточно разнообразны. Применяются методы оптических (в том числе лазерных), радиолокационных, фото- и теленаблюдений.

В зависимости от применяемых методов и принципов работы наблюдаются либо существенные погрешности измерений, либо отсутствие возможностей:

– измерения в полном диапазоне (например, дальние и близкие «дальности» одновременно);

– комплексное наблюдение всех факторов загрязнений;

– одновременное наблюдение за группами объектов КМ, за объектами различных размеров, с разными скоростями и параметрами орбит;

– наблюдения в реальном времени (маркировка для опознавания, фиксация параметров, изменения параметров);

– обнаружение всех объектов, включая самые мелкие (в зависимости от методов обнаружения и отдалённости делятся: до 1—2 мм, до 1 см, до 10 см и больше).

С учётом перечисленных недостатков существующий мониторинг позволяет создавать только математические модели части объектов КМ и только прогнозировать их поведение, то есть отслеживать не в реальном времени.

Проблема: не предложен достаточно надёжный способ маркировки объектов КМ и обмена данными между ними и анализирующими устройствами.

Одним из способов слежения за движущимися наземными объектами является их маркировка. Например, на животных устанавливают окольцовку и GPS-передатчики, за людьми наблюдают видео- и фотокамеры, повсеместно применяются электронные и магнитные штрихкоды, радиолокация используется в военных и промысловых целях.



Каждый способ, особенно в космических условиях, имеет недостатки: невозможность измерения всех факторов загрязнения одновременно; нереальная или дорогостоящая установка на объекты, движущиеся с огромной скоростью и имеющие небольшие размеры; недостаточный объём получения данных об объектах; отсутствие слежения в реальном времени; проблемы энергопотребления.

На Земле для точных измерений чаще применяются активные методы радиолокации, но в космических условиях это значительный расход электроэнергии.

При использовании пассивных методов сигналы подвергаются целому ряду искажающих помех, а собственный фон объектов (электромагнитный, инфракрасный и др.) должен быть достаточным для обнаружения. В условиях космоса эхолокация вообще отпадает.

Результаты наблюдений наземных станций заносятся в специальные каталоги космического мусора, но параметры КМ постоянно меняются, и отследить их с Земли в реальном времени невозможно.



По математическому моделированию написано множество трудов, но в настоящее время им не находится практического применения.

Проблема: не существует реальных наземных и космических систем, способных удалять космический мусор.

В настоящий момент идут обсуждения методов ликвидации КМ: складирование в точках Лагранжа, перевод объектов на орбиты захоронения (для самоуправляемых АС) и увод в космическое пространство, уничтожение на месте, торможение атмосферой.

Спутниковые системы стараются располагать на энергосберегающих орбитах, в зонах, откуда они отслеживают («покрывают») требуемые территории Земли или решают другие задачи (например, экономия топлива при выводе на экваториальную орбиту). Постепенно ощущаться нехватка мест для новых систем, наблюдение космоса с Земли затруднено.

Некоторые системы помещают в точки Лагранжа для энергосберегающего маневрирования. Там же скапливается и дрейфующий рядом КМ. Возникает дилемма: складировать космический мусор в точках Лагранжа или расчищать их для энергосберегающего использования спутниками.



Увод КМ к орбитам захоронения или в дальний космос сопровождается большим расходом топлива. Самоуправляемых систем мало, и не на всех предусмотрен запас топлива. Договорённость космических держав о создании безопасных самоуводящихся и самоликвидирующихся систем находится в стадии обсуждения.

Коротко о представленных в интернет разработках

Наиболее реальные тягачи для транспортировки КМ построены по принципу солнечного паруса и использования геомагнитного поля Земли. Проблема захвата обломков не решена, полёт не контролируем, скорость черепашья.



Многоразовые системы с манипулятором технически и экономически неэффективны. Смогут собрать лишь небольшую часть крупных объектов. Системы громоздки, не маневренны, энергозатратны, дорогостоящи в эксплуатации и при утилизации собранных объектов.



Способ крепление двигателя на объекты теоретически применим только к объектам больших размеров и движущихся с малой скоростью. Чтобы догонять объекты нужно тратить топливо. К тому же двигателю тоже потребуется энергия и хоть какая-то система управления. Система рискует стать одноразовой и смысл её применения потеряется.

 

Системам, придающим объекту импульс движения направленным выстрелом (снаряд, газ, другое) или механическим толчком (манипулятор), потребуется сначала этот предмет захватить или попасть в него и затратить энергию, а «отдача» противодействия бесконтрольно изменит параметры орбиты самой системы.

Уничтожение лазером или зарядом не изучено до конца и небезопасно для соседних систем. Дробление на осколки ещё больше усложнит ситуацию.



Торможение лазером или солнечным рефлектором в атмосферу неконтролируемо. Успех воздействия зависит от отражающих и геометрических характеристик поверхностей. Для лазера необходима энергия. Можно использовать как средство экстремальной защиты АС для корректировки траекторий приближающихся обломков.



Выстреливающиеся «гасящие» скорость КМ экраны требуют наличия их запаса на АС для длительного защитного применения, действуют на небольших расстояниях и требуют точности выброса. Стационарные экраны громоздки, требуют ремонта, правильной установки или возможности корректировки угла защиты; их можно использовать только для защиты отдельных систем жизнеобеспечения.

Увод мелкого мусора в атмосферу группами требует создания конструкций определённого типа. В настоящее время существуют проекты пассивного захвата мелких частиц. Это пористые шары и мембраны тканого типа, выводимые на орбиту. Размещение потребует точности. Маневрирование и утилизация почти не контролируются. Количество конструкций велико.



Групповой захват объектов с помощью огромной сети и нескольких спутников требует точной координации их действий.

Сеть может запутаться, порваться, зацепиться за орбитальную станцию, в неё могут попасть ближайшие АС, а магнитная сеть может притянуться сама, и тогда спутники и сеть сами станут опасным космическим мусором.



Системы-ловушки нашли наибольший отклик среди изобретателей. Конструкции разнообразны, но в целом сводятся к механическому или магнитному удержанию. Требуется минимальное сближение, так как в большинстве конструкций используются штанги, манипуляторы и гарпуны на тросах. Утилизация предполагается вместе с дорогостоящей ловушкой.





Такие экзотические проекты, как обливание объекта водой для его утяжеления, или создание «болота» распылением вольфрамовых частиц, или «вывешивание» троса, с которым весь КМ когда-то столкнётся, или торможение размотанным с катушки пятикилометровым тросом, или многолетнее торможение парашютом, – пока представляются только теоретически.

Многие из описанных систем могут функционировать только на низких орбитах, используя для торможения плотную атмосферу, большинство – только с крупными объектами. Возможности каждой системы в отдельности очень ограничены. Используются пассивные средства наблюдения с Земли, а контролирующие системы, обеспечивающие безопасные манёвры, неэффективны или отсутствуют.

To koniec darmowego fragmentu. Czy chcesz czytać dalej?