Czytaj książkę: «Глоссариум по искусственному интеллекту: 2500 терминов. Том 2»
Редактор Хаджимурад Ахмедович Магомедов
Корректор Александр Хафизович Юлдашев
Иллюстратор Александр Юрьевич Чесалов
Дизайнер обложки Александр Юрьевич Чесалов
© Александр Юрьевич Чесалов, 2024
© Александр Николаевич Власкин, 2024
© Матвей Олегович Баканач, 2024
© Александр Юрьевич Чесалов, иллюстрации, 2024
© Александр Юрьевич Чесалов, дизайн обложки, 2024
ISBN 978-5-0060-9410-9 (т. 2)
ISBN 978-5-0060-9411-6
Создано в интеллектуальной издательской системе Ridero
От авторов-составителей
Александр Юрьевич Чесалов,
Власкин Александр Николаевич,
Баканач Матвей Олегович
Эксперты по информационным технологиям и искусственному интеллекту, разработчики программы Центра искусственного интеллекта МГТУ им. Н. Э. Баумана, программы «Искусственный интеллект» и «Глубокая аналитика» проекта «Приоритет 2030» МГТУ им. Н. Э. Баумана в 2021—2022 годах.
Дорогие Друзья и Коллеги!
Авторы составители этой книги посвятили подготовке и созданию данного глоссария (краткого словаря специализированных терминов) два года.
«Пилотная» версия книги была подготовлена всего за восемь месяцев и представлена на на 35-ой Московской международной книжной ярмарке в 2022 году.
В какой-то момент времени книга выросла до восьми ста шестидесяти страниц и нам пришлось подготовить двухтомное издание.
Сейчас мы рады представить Вам второй том книги, который содержит более тысячи двух сот пятидесяти терминов и определений по искусственному интеллекту на английском языке.
Изображение обложки к книге нарисовано в системе генеративного искусственного интеллекта Easy Diffusion.
35-ая Московская международная книжная ярмарка в 2022 году. С лева направо Александр Чесалов, Александр Власкин и Матвей Баканач
Почему книга называется «Глоссариум»?
«Glossarium» на латинском языке означает словарь узкоспециализированных терминов.
Идея составления «глоссариев» принадлежит одному из соавторов книги – Александру Чесалову. Первый его опыт в этой области был в составлении глоссария по искусственному интеллекту и информационным технологиям, который он опубликовал в декабре 2021 года.1 В нем первоначально было всего 400 терминов. Затем, уже в 2022 году, Александр его существенно расширил до более чем 1000 актуальных терминов и определений. Впоследствии он опубликовал целую серию книг, раскрывающих темы четвертой промышленной революции, цифровой экономики, цифрового здравоохранения и многих других.
Идея создания большого глоссария по искусственному интеллекту родилась в начале 2022 года. Авторы пришли к единодушному решению объединить свои усилия и свой опыт последних лет в области искусственного интеллекта, который был подкреплен несколькими знаменательными и судьбоносными событиями.
Несомненно, самое существенное событие, которое произошло несколько ранее в 2021 году – это участие авторов (как экспертов) в Конкурсе, проводимом Аналитическим Центром при Правительстве России по отбору получателей поддержки исследовательских центров в сфере искусственного интеллекта, в том числе в области «сильного» искусственного интеллекта, систем доверенного искусственного интеллекта и этических аспектов применения искусственного интеллекта. Перед нами стояла неординарная и еще на тот момент времени никем не решенная задача создания Центра разработки и внедрения сильного и прикладного искусственного интеллекта МГТУ им. Н. Э. Баумана. Все авторы этой книги приняли самое непосредственное участие в разработке и написании программы и плана мероприятий нового Центра. Подробнее об этой истории можно узнать из книги Александра Чесалова «Как создать центр искусственного интеллекта за 100 дней».
Далее мы приняли участие в Первом международном форуме «Этика искусственного интеллекта: начало доверия», который состоялся 26 октября 2021 года и в рамках которого была организована церемония торжественного подписания Национального кодекса этики искусственного интеллекта, устанавливающего общие этические принципы и стандарты поведения, которыми следует руководствоваться участникам отношений в сфере искусственного интеллекта в своей деятельности. По сути, форум стал первой в России специализированной площадкой, где собралось около полутора тысяч разработчиков и пользователей технологий искусственного интеллекта.
В дополнение ко всему мы не прошли мимо и Международной конференции по искусственному интеллекту и анализу данных AI Journey, в рамках которой 10 ноября 2021 года к подписанию Национального Кодекса этики искусственного интеллекта присоединились лидеры ИТ-рынка. Число спикеров конференции поражало воображение – их было более двухсот, а число онлайн-посещений сайта более сорока миллионов.
Уже в 2022 году мы приняли самое активное участие в Международном военно-техническом форуме «Армия-2022» с докладом «Разработка программно-аппаратных комплексов для решения широкого круга прикладных задач с использованием технологий машинного обучения и доверенного искусственного интеллекта в Оборонно-промышленном комплексе РФ».
Резюмируя всю нашу активную работу за последние пару лет, мы пришли к необходимости систематизировать накопленные знания и изложить их в новой книге, которую вы держите в своих руках.
Мы часто с вами слышим «искусственный интеллект».
Но понимаем ли мы что это такое?
Например, в этой книге мы зафиксировали, что Искусственный интеллект – это компьютерная система, основанная на комплексе научных и инженерных знаний, а также технологий создания интеллектуальных машин, программ, сервисов и приложений, имитирующая мыслительные процессы человека или живых существ, способная с определенной степенью автономности воспринимать информацию, обучаться и принимать решения на основе анализа больших массивов данных, целью создания которой является помощь людям в решении их повседневных рутинных задач.
Или, еще один пример.
Что такое «доверенный искусственный интеллект»?
Системой доверенного искусственного интеллекта называют прикладную систему искусственного интеллекта, обеспечивающую выполнение возложенных на нее задач с учетом ряда дополнительных требований, учитывающих этические аспекты применения искусственного интеллекта, которая обеспечивает доверие к результатам ее работы, которые, в свою очередь, включают в себя: достоверность (надежность) и интерпретируемость выводов и предлагаемых решений, полученных с помощью системы и проверенных на верифицированных тестовых примерах; безопасность как с точки зрения невозможности причинения вреда пользователям системы на протяжении всего жизненного цикла системы, так и с точки зрения защиты от взлома, несанкционированного доступа и других негативных внешних воздействий, приватность и проверяемость данных, с которыми работают алгоритмы искусственного интеллекта, включая разграничение доступа и другие связанные с этим вопросы.
А что же тогда такое «машинное обучение»?
Машинное обучение – это одно из направлений (подмножеств) искусственного интеллекта, благодаря которому воплощается ключевое свойство интеллектуальных компьютерных систем – самообучение на основе анализа и обработки больших разнородных данных. Чем больше объем информации и ее разнообразие, тем проще искусственному интеллекту найти закономерности и тем точнее будет получаемый результат.
Чтобы заинтересовать уважаемого читателя, приведем еще несколько «забавных» примеров.
Слышали ли вы когда-нибудь о «Трансгуманистах»?
С одной стороны, как идея Трансгуманизм (Transhumanism) – это расширение возможностей человека с помощью науки. С другой стороны – это философская концепция и международное движение, приверженцы которого желают стать «постлюдьми» и преодолеть всевозможные физические ограничения, болезни, душевные страдания, старость и смерть благодаря использованию возможностей нано- и био- технологий, искусственного интеллекта и когнитивной науки.
На наш взгляд, идеи «трансгуманизма» очень тесно пересекаются с идеями и концепциями «цифрового человеческого бессмертия».
TEDx ForestersPark 2019 год
Несомненно, вы слышали и конечно знаете, кто такой «Data Scientist» – ученый и специалист по работе с данными.
А слышали ли вы когда-нибудь о «датасатанистах»? :-)
Датасатанисты – это определение, придуманное авторами, но отражающее современную действительность (наравне, например, с термином «инфоцыганщина»), которая сформировалась в период популяризации и повсеместной реализации идей искусственного интеллекта в современном информационном обществе. По своей сути датасатанисты – это мошенники и преступники, которые очень умело маскируются под ученых и специалистов в области ИИ и МО, но при этом пользуются чужими заслугами, знаниями и опытом, в своих корыстных целях и целях незаконного обогащения.
А, как вам такой термин – «библеоклазм»?
Библиоклазм – человек, в силу своего трансформированного мировоззрения и чрезмерно раздутого эго, из зависти или какой-либо другой корыстной цели, который стремится уничтожить книги других авторов. Вы не поверите, но таких людей, как «датасатанисты» или «библиоклазмы» сейчас достаточно.
А, как вам такие термины: «искусственная жизнь», «искусственный сверхинтеллект», «нейроморфный искусственный интеллект», «человеко-ориентированный искусственный интеллект», «синтетический интеллект», «распределенный искусственный интеллект», «дружественный искусственный интеллект», «дополненный искусственный интеллект», «композитный искусственный интеллект», «объяснимый искусственный интеллект», «причинно-следственный искусственный интеллект», «символический искусственный интеллект» и многие другие (все они есть в этой книге).
Таких примеров «удивительных» терминов мы можем привести еще не мало. Но в своей работе мы не стали тратить время на «суровую действительность» и сместили акцент на конструктивный и позитивный настрой. Одним словом, мы провели для Вас большую работу и собрали более 2500 терминов и определений по машинному обучению и искусственному интеллекту на основе своего опыта и данных из огромного числа различных источников.
2500 терминов и определений.
Много это или мало?
Наш опыт подсказывает, что для взаимопонимания двум собеседникам достаточно знать десяток или, максимум, два десятка определений. Но, когда дело касается профессиональной деятельности, то может получиться так, что мало знать, даже, несколько десятков терминов.
В этой книге приведены самые актуальные термины и определения, по-нашему мнению, наиболее часто употребляемые, как в повседневной работе, так и профессиональной деятельности специалистами самых разных профессий, интересующихся темой «искусственного интеллекта».
Мы очень старались сделать для вас нужный и полезный «инструмент» для вашей работы.
В заключение хочется добавить и проинформировать уважаемого читателя о том, что эта книга является абсолютно открытым и свободным к распространению документом. В случае, если Вы используете ее в своей практической работе, просим Вас делать ссылку на нее.
Многие из терминов и определений к ним, в этой книге, встречаются в сети Интернет. Они повторяются десятки или сотни раз на различных информационных ресурсах (в основном на зарубежных). Тем не менее, мы поставили перед собой цель – собрать и систематизировать самые актуальные из них в одном месте из самых разных источников, нужные из них перевести на русский язык и/или адаптировать, а какие-то и написать заново, исходя из собственного опыта.
Учитывая вышесказанное, мы не претендуем на авторство или уникальность представленных терминов и определений, но, несомненно, мы внесли свой собственный вклад в систематизацию и адаптацию многих из них.
Книга написана, прежде всего, для вашего удовольствия.
Мы продолжаем работу по улучшению качества и содержания текста этой книги, в том числе дополняем ее новыми знаниями по предметной области. Будем вам благодарны за любые отзывы, предложения и уточнения. Направляйте их, пожалуйста, на aleksander.chesalov@yandex.ru
Приятного Вам чтения и продуктивной работы!
Ваши, Александр Чесалов, Александр Власкин и Матвей Баканач.
16.08.2022. Издание первое.
09.03.2023. Издание второе. Исправленное и дополненное.
01.01.2024. Издание третье. Исправленное и дополненное.
Artificial Intelligence glossary
«A»
A/B Testing is a statistical way of comparing two (or more) techniques, typically an incumbent against a new rival. A/B testing aims to determine not only which technique performs better but also to understand whether the difference is statistically significant. A/B testing usually considers only two techniques using one measurement, but it can be applied to any finite number of techniques and measures2.
Abductive logic programming (ALP) is a high-level knowledge-representation framework that can be used to solve problems declaratively based on abductive reasoning. It extends normal logic programming by allowing some predicates to be incompletely defined, declared as adducible predicates3.
Abductive reasoning (also abduction) is a form of logical inference which starts with an observation or set of observations then seeks to find the simplest and most likely explanation. This process, unlike deductive reasoning, yields a plausible conclusion but does not positively verify it. abductive inference, or retroduction4.
Abstract data type is a mathematical model for data types, where a data type is defined by its behavior (semantics) from the point of view of a user of the data, specifically in terms of possible values, possible operations on data of this type, and the behavior of these operations5.
Abstraction — the process of removing physical, spatial, or temporal details or attributes in the study of objects or systems in order to more closely attend to other details of interest6.
Accelerating change is a perceived increase in the rate of technological change throughout history, which may suggest faster and more profound change in the future and may or may not be accompanied by equally profound social and cultural change7.
Access to information – the ability to obtain information and use it8.
Access to information constituting a commercial secret – familiarization of certain persons with information constituting a commercial secret, with the consent of its owner or on other legal grounds, provided that this information is kept confidential9.
Accuracy – the fraction of predictions that a classification model got right. In multi-class classification, accuracy is defined as follows:
In binary classification, accuracy has the following definition:
See true positive and true negative. Contrast accuracy with precision and recall10,11.
Action in reinforcement learning, is the mechanism by which the agent transitions between states of the environment. The agent chooses the action by using a policy12.
Action language is a language for specifying state transition systems, and is commonly used to create formal models of the effects of actions on the world. Action languages are commonly used in the artificial intelligence and robotics domains, where they describe how actions affect the states of systems over time, and may be used for automated planning13.
Action model learning is an area of machine learning concerned with creation and modification of software agent’s knowledge about effects and preconditions of the actions that can be executed within its environment. This knowledge is usually represented in logic-based action description language and used as the input for automated planners14.
Action selection is a way of characterizing the most basic problem of intelligent systems: what to do next. In artificial intelligence and computational cognitive science, «the action selection problem» is typically associated with intelligent agents and animats – artificial systems that exhibit complex behaviour in an agent environment15.
Activation function in the context of Artificial Neural Networks, is a function that takes in the weighted sum of all of the inputs from the previous layer and generates an output value to ignite the next layer16.
Active Learning/Active Learning Strategy is a special case of Semi-Supervised Machine Learning in which a learning agent is able to interactively query an oracle (usually, a human annotator) to obtain labels at new data points. A training approach in which the algorithm chooses some of the data it learns from. Active learning is particularly valuable when labeled examples are scarce or expensive to obtain. Instead of blindly seeking a diverse range of labeled examples, an active learning algorithm selectively seeks the particular range of examples it needs for learning17,18,19.
Adam optimization algorithm it is an extension of stochastic gradient descent which has recently gained wide acceptance for deep learning applications in computer vision and natural language processing20.
Adaptive algorithm is an algorithm that changes its behavior at the time it is run, based on a priori defined reward mechanism or criterion21,22.
Adaptive Gradient Algorithm (AdaGrad) is a sophisticated gradient descent algorithm that rescales the gradients of each parameter, effectively giving each parameter an independent learning rate23.
Adaptive neuro fuzzy inference system (ANFIS) (also adaptive network-based fuzzy inference system) is a kind of artificial neural network that is based on Takagi—Sugeno fuzzy inference system. The technique was developed in the early 1990s. Since it integrates both neural networks and fuzzy logic principles, it has potential to capture the benefits of both in a single framework. Its inference system corresponds to a set of fuzzy IF—THEN rules that have learning capability to approximate nonlinear functions. Hence, ANFIS is considered to be a universal estimator. For using the ANFIS in a more efficient and optimal way, one can use the best parameters obtained by genetic algorithm24.
Adaptive system is a system that automatically changes the data of its functioning algorithm and (sometimes) its structure in order to maintain or achieve an optimal state when external conditions change25.
Additive technologies are technologies for the layer-by-layer creation of three-dimensional objects based on their digital models («twins»), which make it possible to manufacture products of complex geometric shapes and profiles26.
Admissible heuristic in computer science, specifically in algorithms related to pathfinding, a heuristic function is said to be admissible if it never overestimates the cost of reaching the goal, i.e., the cost it estimates to reach the goal is not higher than the lowest possible cost from the current point in the path27.
Affective computing (also artificial emotional intelligence or emotion AI) – the study and development of systems and devices that can recognize, interpret, process, and simulate human affects. Affective computing is an interdisciplinary field spanning computer science, psychology, and cognitive science28.
Agent architecture is a blueprint for software agents and intelligent control systems, depicting the arrangement of components. The architectures implemented by intelligent agents are referred to as cognitive architectures29.
Agent in reinforcement learning, is the entity that uses a policy to maximize expected return gained from transitioning between states of the environment30.
Agglomerative clustering (see hierarchical clustering) is one of the clustering algorithms, first assigns every example to its own cluster, and iteratively merges the closest clusters to create a hierarchical tree31.
Aggregate is a total created from smaller units. For instance, the population of a county is an aggregate of the populations of the cities, rural areas, etc., that comprise the county. To total data from smaller units into a large unit32.
Aggregator is a type of software that brings together various types of Web content and provides it in an easily accessible list. Feed aggregators collect things like online articles from newspapers or digital publications, blog postings, videos, podcasts, etc. A feed aggregator is also known as a news aggregator, feed reader, content aggregator or an RSS reader33.
AI acceleration – acceleration of calculations encountered with AI, specialized AI hardware accelerators are allocated for this purpose (see also artificial intelligence accelerator, hardware acceleration)34.
AI acceleration is the acceleration of AI-related computations, for this purpose specialized AI hardware accelerators are used35.
AI accelerator is a class of microprocessor or computer system designed as hardware acceleration for artificial intelligence applications, especially artificial neural networks, machine vision, and machine learning36.
AI accelerator is a specialized chip that improves the speed and efficiency of training and testing neural networks. However, for semiconductor chips, including most AI accelerators, there is a theoretical minimum power consumption limit. Reducing consumption is possible only with the transition to optical neural networks and optical accelerators for them37.
AI benchmark is an AI benchmark for evaluating the capabilities, efficiency, performance and for comparing ANNs, machine learning (ML) models, architectures and algorithms when solving various AI problems, special benchmarks are created and standardized, initial marks. For example, Benchmarking Graph Neural Networks – benchmarking (benchmarking) of graph neural networks (GNS, GNN) – usually includes installing a specific benchmark, loading initial datasets, testing ANNs, adding a new dataset and repeating iterations.
AI benchmark is benchmarking of AI systems, to assess the capabilities, efficiency, performance and to compare ANNs, machine learning (ML) models, architectures and algorithms when solving various AI problems, special benchmark tests are created and standardized, benchmarks. For example, Benchmarking Graph Neural Networks – benchmarking (benchmarking) of graph neural networks (GNS, GNN) – usually includes installing a specific benchmark, loading initial datasets, testing ANNs, adding a new dataset and repeating iterations (see also artificial neural network benchmarks).
AI Building and Training Kits – applications and software development kits (SDKs) that abstract platforms, frameworks, analytics libraries, and data analysis appliances, allowing software developers to incorporate AI into new or existing applications.
AI camera is a camera with artificial intelligence, digital cameras of a new generation – allow you to analyze images by recognizing faces, their expression, object contours, textures, gradients, lighting patterns, which is taken into account when processing images; some AI cameras are capable of taking pictures on their own, without human intervention, at moments that the camera finds most interesting, etc. (see also camera, software-defined camera).
AI chipset is a chipset for systems with AI, for example, AI chipset industry is an industry of chipsets for systems with AI, AI chipset market is a market for chipsets for systems with AI.
AI chipset market – chipset market for systems with artificial intelligence (AI), see also AI chipset.
AI chipset market is the market for chipsets for artificial intelligence (AI) systems.
AI cloud services – AI model building tools, APIs, and associated middleware that enable you to build/train, deploy, and consume machine learning models that run on a prebuilt infrastructure as cloud services. These services include automated machine learning, machine vision services, and language analysis services.
AI CPU is a central processing unit for AI tasks, synonymous with AI processor.
AI engineer – AI systems engineer.
AI engineering – transfer of AI technologies from the level of R&D, experiments and prototypes to the engineering and technical level, with the expanded implementation of AI methods and tools in IT systems to solve real production problems of a company, organization. One of the strategic technological trends (trends) that can radically affect the state of the economy, production, finance, the state of the environment and, in general, the quality of life of a person and humanity.
AI hardware (also AI-enabled hardware) – artificial intelligence infrastructure system hardware, AI infrastructure. Explanations in the Glossary are usually brief.
AI hardware is infrastructure hardware or artificial intelligence system, AI infrastructure.
AI industry – for example, commercial AI industry – commercial AI industry, commercial sector of the AI industry.
AI industry trends are promising directions for the development of the AI industry.
AI infrastructure (also AI-defined infrastructure, AI-enabled Infrastructure) – artificial intelligence infrastructure systems, for example, AI infrastructure research – research in the field of AI infrastructures (see also AI, AI hardware).
AI server (artificial intelligence server) – is a server with (based on) AI; a server that provides solving AI problems.
AI shopper is a non-human economic entity that receives goods or services in exchange for payment. Examples include virtual personal assistants, smart appliances, connected cars, and IoT-enabled factory equipment. These AIs act on behalf of a human or organization client.
AI supercomputer is a supercomputer for artificial intelligence tasks, a supercomputer for AI, characterized by a focus on working with large amounts of data (see also artificial intelligence, supercomputer).
AI term is a term from the field of AI (from terminology, AI vocabulary), for example, in AI terms – in terms of AI (in AI language) (see also AI terminology).
AI term is a term from the field of AI (from terminology, AI vocabulary), for example, in AI terms – in terms of AI (in AI language).
AI terminology (artificial intelligence terminology) is a set of special terms related to the field of AI (see also AI term).
AI terminology is the terminology of artificial intelligence, a set of technical terms related to the field of AI.
AI TRiSM is the management of an AI model to ensure trust, fairness, efficiency, security, and data protection38.
AI vendor is a supplier of AI tools (systems, solutions).
AI vendor is a supplier of AI tools (systems, solutions).
AI winter (Winter of artificial intelligence) is a period of reduced interest in the subject area, reduced research funding. The term was coined by analogy with the idea of nuclear winter. The field of artificial intelligence has gone through several cycles of hype, followed by disappointment and criticism, followed by a strong cooling off of interest, and then followed by renewed interest years or decades later39,40.
AI workstation is a workstation (PC) with (based on) AI; AI RS, a specialized computer for solving technical or scientific problems, AI tasks; usually connected to a LAN with multi-user operating systems, intended primarily for the individual work of one specialist.
AI workstation is a workstation (PC) with means (based on) AI; AI PC, a specialized desktop PC for solving technical or scientific problems, AI tasks; usually connected to a LAN with multi-user operating systems, intended primarily for the individual work of one specialist.
AI-based management system – the process of creating policies, allocating decision-making rights and ensuring organizational responsibility for risk and investment decisions for an application, as well as using artificial intelligence methods.
AI-based systems are information processing technologies that include models and algorithms that provide the ability to learn and perform cognitive tasks, with results in the form of predictive assessment and decision making in a material and virtual environment. AI systems are designed to work with some degree of autonomy through modeling and representation of knowledge, as well as the use of data and the calculation of correlations. AI-based systems can use various methodologies, in particular: machine learning, including deep learning and reinforcement learning; automated reasoning, including planning, dispatching, knowledge representation and reasoning, search and optimization. AI-based systems can be used in cyber-physical systems, including equipment control systems via the Internet, robotic equipment, social robotics and human-machine interface systems that combine the functions of control, recognition, processing of data collected by sensors, as well as the operation of actuators in the environment of functioning of AI systems41.
AI-complete. In the field of artificial intelligence, the most difficult problems are informally known as AI-complete or AI-hard, implying that the difficulty of these computational problems is equivalent to that of solving the central artificial intelligence problem – making computers as intelligent as people, or strong AI. To call a problem AI-complete reflects an attitude that it would not be solved by a simple specific algorithm42.
AI-enabled – using AI and equipped with AI, for example, AI-enabled tools – tools with AI (see also AI-enabled device).
AI-enabled device is a device supported by an artificial intelligence (AI) system, such as an intelligent robot.
AI-enabled device is a device supported by an artificial intelligence (AI) system, such as an intelligent robot (see also AI-enabled healthcare device)43.
AI-enabled healthcare device is an AI-enabled device for healthcare (medical care), see also AI-enabled device.
AI-enabled healthcare device is an AI-enabled healthcare device44.
AI-enabled is hardware or software that uses AI-enabled AI, such as AI-enabled tools.
AI-optimized – optimized for AI tasks; AI-optimized chip, for example, an AI-optimized chip is a chip optimized for AI tasks (see also artificial intelligence).
AI-optimized is one that is optimized for AI tasks or optimized using AI tools, for example, an AI-optimized chip is a chip that is optimized for AI tasks.
AlexNet – the name of a neural network that won the ImageNet Large Scale Visual Recognition Challenge in 2012. It is named after Alex Krizhevsky, then a computer science PhD student at Stanford University. See ImageNet.45