Czytaj tylko na LitRes

Książki nie można pobrać jako pliku, ale można ją czytać w naszej aplikacji lub online na stronie.

Основной контент книги Rank-Based Methods for Shrinkage and Selection
Tekst

Objętość 1203 strony

0+

Rank-Based Methods for Shrinkage and Selection

With Application to Machine Learning
Czytaj tylko na LitRes

Książki nie można pobrać jako pliku, ale można ją czytać w naszej aplikacji lub online na stronie.

569,59 zł

O książce

Rank-Based Methods for Shrinkage and Selection A practical and hands-on guide to the theory and methodology of statistical estimation based on rank Robust statistics is an important field in contemporary mathematics and applied statistical methods. Rank-Based Methods for Shrinkage and Selection: With Application to Machine Learning describes techniques to produce higher quality data analysis in shrinkage and subset selection to obtain parsimonious models with outlier-free prediction. This book is intended for statisticians, economists, biostatisticians, data scientists and graduate students. Rank-Based Methods for Shrinkage and Selection elaborates on rank-based theory and application in machine learning to robustify the least squares methodology. It also includes: Development of rank theory and application of shrinkage and selection Methodology for robust data science using penalized rank estimators Theory and methods of penalized rank dispersion for ridge, LASSO and Enet Topics include Liu regression, high-dimension, and AR(p) Novel rank-based logistic regression and neural networks Problem sets include R code to demonstrate its use in machine learning

Gatunki i tagi

Zaloguj się, aby ocenić książkę i zostawić recenzję
Mohammad Arashi, Resve A. Saleh i in. «Rank-Based Methods for Shrinkage and Selection» — czytaj online na stronie. Zostaw komentarze i recenzje, głosuj na ulubione.
Ograniczenie wiekowe:
0+
Objętość:
1203 str. 1356 ilustracje
ISBN:
9781119625421
Wydawca:
Właściciel praw:
John Wiley & Sons Limited