Czytaj książkę: «Влияние различных уровней источников метионина на показатели продуктивности цыплят-бройлеров. Монография»

Czcionka:

Работа выполняется при поддержке гранта Президента РФ для

молодых ученых-кандидатов наук МК-2474.2022.5

Рецензенты:

Корниенко П.П., доктор с.-х. наук, профессор кафедры общей и

частной зоотехнии (ФГБОУ ВО Белгородский ГАУ, п. Майский)

Хохлова А.П., кандидат с.-х. наук, доцент кафедры общей и частной

зоотехнии (ФГБОУ ВО Белгородский ГАУ, п. Майский)

Авторы: Рядинская А. А., Кощаев И. А., Лавриненко К. В., Токарь П. И., Зайцев А. А.

© А. А. Рядинская, 2022

© И. А. Кощаев, 2022

© К. В. Лавриненко, 2022

© П. И. Токарь, 2022

© А. А. Зайцев, 2022

ISBN 978-5-0059-1147-6

Создано в интеллектуальной издательской системе Ridero

ВВЕДЕНИЕ

Российские птицеводы превысили количественные показатели продовольственной безопасности: в 2017 г. произведено 4 млн. 650 тыс. тонн мяса птицы, то есть самообеспеченность им составила 96%. Среднедушевое его потребление – 32,4 килограмма. Если сравнивать с мировыми показателями, то Россия занимает 4-е место по производству мяса птицы после Китая, США, Индии и Мексики.

Среди кроссов, используемых в стране, практически отсутствуют отечественные. Занимают рынок: Кобб-500 (33%), Росс-308 (32%), Хаббард (33%) [13].

Птицеводство – отрасль наиболее восприимчивая к нововведениям. Поэтому наиболее важными предпосылками эффективного развития этой отрасли были и считаются до сих пор научно-технические факторы. Ведь только благодаря НТП стала возможной и интенсификация, и индустриализация птицеводства. И поэтому необходимость в коренных изменениях отношения к использованию достижений науки и практики хозяйственной деятельности специализированных предприятий отрасли стала очевидной [28, 103].

В современных условиях жесткой конкуренции решение задач, стоящих перед птицеводством, возможно только в русле инновационного развития. Потребность в развитии инновационных идей испытывают все отрасли агропромышленного комплекса, в частности и птицеводства, так как от квалифицированной инновационной деятельности зависит успешное функционирование птицеводческих предприятий во внешней среде, а также продвижение произведенной птицеводческой продукции на внутренние и внешние рынки [123, 1].

При этом решающее влияние на экономику производства оказывает качества мяса и продуктивность цыплят-бройлеров

Птицеводческая мясная индустрия, без сомнения, является наиболее успешной из всех отраслей животноводства. Сегодня можно в 40-дневном возрасте получить бройлера-петушка массой 3 килограмм [2,4].

Однако в настоящее время многие производители стремятся сократить сроки откорма птицы для увеличения количества циклов выращивания в году. Но при сокращении сроков выращивания сложно добиться высоких качественных показателей мяса.

Основная задача птицеводства в современных условиях – повышение продуктивности птицы и качества продукции для более полного удовлетворения потребностей населения в экологически безопасных и высококачественных продуктах питания [102, 7].

Учитывая это, при проведении научных исследований в области птицеводства и конкурсных испытаниях птицы, возникает необходимость осуществлять оценку мясных качеств тушек и проводить органолептическую оценку яиц и мяса птицы [11].

Быстрое развитие птицеводства устанавливает новые требования к балансу питательных веществ в птицеводстве высокопродуктивных пород и гибридов. В этом отношении особенно важно улучшить технологию кормления домашней птицы, которая возможна с использованием научно обоснованных стандартов питания. В этом контексте качественное изменение характера продовольственного снабжения путем создания и использования эффективных биоактивных добавок и нового поколения лекарств не только питательно, но и защищает организм птицы [16].

Использование современных знаний о потребностях в питании и энергии, а также организация, основанная на этом рациональном питании домашней птицы, могут значительно повысить продуктивность и эффективность использования кормов для животных (Егоров И. и др., 2012). В последние годы ситуация с кормовой базой значительно изменилась в стране, что побудило специалистов адаптировать программы корма для домашней птицы. Переход к новой структуре некоторых кормов требует детального изучения анатомических, физиологических и биохимических, особенно птиц. Для того, чтобы повысить уровень реализации биоресурсного потенциала птицы, зависят от различных факторов – наследственные и окружающей среды [113, 9].

Полное и сбалансированное кормление влияет на экологические воздействия и является основой для высокопродуктивной продуктивности кормов для птицы и эффективной трансформации питательных веществ в продуктах. Перспективное направление в улучшении производительности птицеводства – улучшить естественные механизмы присущих птице от природы, так, чтобы в промышленных условиях, птица может адекватно без потери 10 производительности в ответ на неизбежный стресс была менее восприимчива к заболеваниям, связанным с особенностями ее кормления и содержания. Рентабельность производства птицы с высоким генетическим потенциалом зависит от качества кормовой добавки, для растущих потребностей организма. Полноценность питания определяется многими факторами, включая витамины и минералы, которые играют важную роль. Их метаболизм в организме нестабилен и зависит от вида, породы, возраста, продуктивности, условий содержания, сочетания питательных веществ, минералы и витамины в рационе, факторы стресса и многое другое. Каждый из этих факторов может изменить использование степени витамина B, макро- и микроэлементов и, следовательно, повлиять на эффективность зоотехнических показателей [2, 8].

Одним из главных принципов ведения современного мясного птицеводства является равномерное круглогодичное производство продукции требует современных подходов как к организации ведения технологического процесса, так и соблюдение технологических параметров выращивания цыплят-бройлеров.

Содержание птиц в птичниках с контролируемым микроклиматом, кормление сбалансированными полнорационными комбикормами, механизация и автоматизация технологических процессов позволяет получить высокий выход продукции – мяса цыплят – бройлеров в течение всего года [109].

Поскольку птица выращивается круглогодично при одинаковых параметрах микроклимата и потребляет полнорационные сухие комбикорма с постоянным химическим составом и питательностью в определенные возрастные периоды, то, казалось, и конечная живая масса должна быть одинакова, но живая масса птицы является полигенно обусловленной признаком, характеризуется невысоким уровнем наследуемости (h2 = 0,22 … 0,65), на уровень ее проявления в значительной степени влияют факторы внешней среды, что требует изучения их влияния на реализацию высокого генетически обусловленного потенциала продуктивности [11, 207].

Ритмичное круглогодичное производство мяса цыплят-бройлеров предусматривает создание и поддержание оптимального микроклимата, необходимых режимов освещения, кормление полнорационными комбикормами, выполнения производственных процессов согласно технологических графиков и карт, соблюдение ветеринарно-санитарных требований – однако строгое выполнение этих требований не всегда позволяет достичь высоких показателей производительности.

Принципы бройлерного производства основываются на использовании высокопродуктивной семенной гибридной птицы; применении полнорационных сухих комбикормов, позволяющих получать высококачественную продукцию при затратах корма на 1 кг прироста 2,5—3 кг; строгом соблюдении зооветеринарных и санитарных норм [193].

В настоящее время бройлерное производство – полная промышленная индустрия в птицеводстве со всей многообразной и конкретной технологией, где в основном выделяются технология выращивания на глубокой подстилке и на сетчатых полах.

Разведение и выращивание цыплят-бройлеров – это возможность обеспечить себя качественным мясом без особых усилий и затрат. Мясная порода отличается оптимальным соотношением расхода кормов и продуктивности, что является успехом для многих птицеводов и производителей [127].

1. Цыплята-бройлеры. Особенности физиологии

Бройлерных кур по-другому называют мясными. Главная особенность всех этих пернатых – быстрый набор массы при относительно небольшом расходе кормов [20]. Данные черты заложены на генетическом уровне. Уже к 60-му дню жизни, бройлеры способны набрать вес в 2 кг и больше. Выращиванием этой разновидности занимаются фермеры, желающие получить исключительно мясную продукцию. Яйца куры, конечно же, приносят, но в небольшом количестве [101, 50].

Бройлерных кур по-другому называют мясными. Главная особенность всех этих пернатых – быстрый набор массы при относительно небольшом расходе кормов. Данные черты заложены на генетическом уровне. Уже к 60-му дню жизни, бройлеры способны набрать вес в 2 кг и больше. Выращиванием этой разновидности занимаются фермеры, желающие получить исключительно мясную продукцию. Яйца куры, конечно же, приносят, но в небольшом количестве. Для чего нужны бройлеры?

Если сравнивать бройлеров и птицу мясного направления, то первые имеют существенные отличия от вторых, и заключаются они в следующем: высокая скорость роста; энергичное развитие; быстрый набор мышечной массы [6].

Достижение генетического потенциала, заложенного в птице, зависит от того, насколько все перечисленные на нижеприведенной схеме факторы одновременно и в одинаковой мере учитывались в производстве. Все эти аспекты взаимосвязаны. Если один из них не соблюдается на оптимальном уровне, то это отрицательно влияет на результаты бройлерного производства в целом [21].

Рисунок 1 – Факторы, влияющие на рост и качество бройлеров


Современное птицеводство характеризуется внедрением промышленных технологий: высокой концентрации поголовья на ограниченных площадях, круглогодового пребывания птицы в закрытых помещениях с клеточным содержанием, использования высококонцентрированных кормов. Интенсивное использование возможностей организма птицы -основа технологии отрасли, которая приводит к ослаблению конституции и здоровья птицы, что сопровождается понижением физиологической реактивности и естественной резистентности организма, нарушением обмена веществ, снижением продуктивности и сохранности, повышением агрессивности и выработкой гормонов стресса, оказывающих негативное влияние и на человека.

В связи с этим технология промышленного птицеводства требует от ветеринарных специалистов глубоких знаний особенностей биохимических процессов, протекающих в организме птицы в ранний постнатальный период, а так же изыскание способов повышения адаптационных возможностей организма с использованием биологических препаратов мягкого действия (адаптогенов, антиоксидантов, гепатопротекторов, иммуностимуляторов), улучшающих состояние функциональных систем, повышающих резистентность, продуктивность и сохранность птиц без каких-либо нарушений процессов пищеварения и обмена веществ [12].

1.1. Физиологические особенности пищеварения птиц

В условиях промышленного птицеводства вопросы рационального кормления и содержания птицы, повышения ее продуктивности не могут успешно решаться без знания специфики основных физиологических процессов, протекающих в её организме.

Птица имеет ряд биологических особенностей: быстрый рост, высокую физиологическую скороспелость, относительно высокую температура тела (40—42С), развитие эмбриона вне тела матери, своеобразное строение кожного покрова и его производных и др. В связи с этим физиология организма птицы во многом отличается от млекопитающего животного.

Пищеварительная система у птиц имеет ряд отличительных особенностей. Основные сведения о физиологии пищеварения у сельскохозяйственных птиц получены благодаря использованию метода хронических фистул, разработанного И. П. Павловым и его школой. С помощью фистул, которые накладывали на разные участки пищеварительного тракта, довольно подробно изучены пищеварительные процессы в зобе, желудке, кишечнике, секреция желчи и поджелудочного сока [78].

Желудочно-кишечный тракт птиц хорошо приспособлен к быстрому и эффективному перевариванию кормов с небольшим содержанием клетчатки. Коэффициент переваримости корма и скорость прохождения кормовой массы через пищеварительный канал у них выше, чем у млекопитающих, это связанно с меньшей протяженностью кишечника и более интенсивным расщеплением питательных веществ.

Ротовая полость образуется верхней и нижней частями клюва, зубы у птиц отсутствуют. Захваченная порция корма не пережевывается, она увлажняется слюной, которая выделяется в небольшом количестве, движениями языка перемещается в глотку и далее в пищевод и зоб [23].

В зобе происходит размягчение и набухание корма, переваривание углеводов, белков и жира за счет ферментов корма, зобного секрета, слюны и аэробных микроорганизмов (лактобацилл, кишечной палочки, энтерококков, грибков, дрожжевых клеток), которые обитают в зобе. Конечными продуктами превращения углеводов являются молочная, уксусная, пропионовая и масляная кислоты.

Желудок птиц состоит из двух отделов – железистого и мышечного. Содержимое зоба через нижний отдел пищевода поступает в железистый желудок и вызывает усиленную секрецию его сока, который содержит соляную кислоту, муцин, ферменты. По данным В. Ф. Лысова и В. И. Максимова (2003), с ильным возбудителем желудочных желез является белок; максимальная секреция желудочного сока и фермента пепсина отмечается при содержании белка в рационе в пределах 15—25%. Большее содержание белка в рационе кур вызывает перевозбуждение желудочных желез и, как следствие, угнетение их секреции. Железистый желудок очень мал, в нем происходит незначительное накапливание и переваривание пищи [1, 89].

Прием корма. Птицы захватывают корм клювом (клюют). Корм, потребляемый птицами разных видов, отличается по свойствам. Соответственно и пищеварительный аппарат у птиц разных видов имеет свои структурно-физиологические особенности.

Захваченная порция корма не пережевывается, а увлажняется слюной и движениями языка перемещается в глотку и далее в пищевод и зоб. Когда птица пьет, то набирает в рот порцию воды и поднимает голову, чтобы ее проглотить. Вода через зоб и желудки поступает прямо в кишечник: проходит по пищеводу, по желобку между мешками зоба, желудкам [17].

Пищеварение в зобе. Пищеварение в зобе сложный двигательно-секреторный процесс. В нем осуществляются два вида сокращений – перистальтические и тонические, которые сложно сочетаются и обеспечивают вначале поступление корма в левую половину зоба, затем в правую. Для зоба характерна определенная закономерность двигательной деятельности: 5… 12 последовательных сокращений сменяются 10-минутной паузой.

Непосредственно после заполнения зоба кормом движения его замедляются или полностью прекращаются на 35…40 мин. Сила сокращений зоба составляет 98…147 Па. Движения зоба обеспечиваются сокращением циркулярных и продольных гладких мышц, которое регулируется через блуждающие и симпатические нервы.

Мелкие компоненты содержимого зоба в первые минуты переходят в нижний отдел пищевода, более крупные задерживаются здесь до 14 ч. Поступление корма в зоб сопровождается возбуждением желез зоба.

В зобе с участием их секрета и слюны происходит размягчение и набухание корма, а также превращение питательных веществ корма за счет ферментов корма, микроорганизмов и слюны. В зобе обитают аэробные микроорганизмы, лактобактерии, кишечная палочка, энтерококки, грибы, дрожжевые клетки [30].

Гидролизуются преимущественно углеводы (под действием α-амилазы) – 8… 13% (до 20%) растворимых углеводов корма, в небольшом количестве белки и жиры (за счет ферментов растительных клеток корма). Конечными продуктами превращения углеводов являются молочная, уксусная, пропионовая и масляная кислоты. Главная функция зоба емкостная. Перемещение содержимого из зоба обеспечивается за счет небольших сокращений в области зобной воронки.

Вначале появляется одно сокращение, через 1…3 мин возникает вторая волна, позже два-три последовательных сокращения, затем длительный покой. Основная масса содержимого эвакуируется из зоба в первые 3…6 ч, меньшая часть – в последующие 8 ч.

Пищеварение в желудке. Содержимое зоба через нижний отдел пищевода поступает в железистый желудок (провентрикулюм), где вызывает усиленную секрецию желудочного сока. Секреция желудочного сока осуществляется непрерывно; прием корма стимулирует его образование и выделение (у кур увеличивается после приема корма до 11… 13 мл/ч) [199].

Желудочный сок содержит фермент пепсин, в нем нет липазы (так как птицы не питаются молоком). Механизм возбуждения желудочных желез нервно-гормональный: установлены сложнорефлекторная и желудочная рефлекторно-гормональная фазы возбуждения и регуляции желудочных желез. Влияния на желудочные железы осуществляются через блуждающие и чревные нервы.

Сильным возбудителем желудочных желез является белок: максимальная секреция желудочного сока и фермента пепсина отмечена при содержании в рационе 15…25% белка. Большее содержание белка в рационе кур, уток и гусей вызывает перевозбуждение желудочных желез и, как следствие, угнетение их секреции.

Железистый желудок выполняет и двигательную функцию: ритм движения – сокращение в 1 мин. Содержимое задерживается непродолжительное время (не более 1 ч); в основном корм переваривается желудочным соком, а затем переходит в мышечный желудок [98].

Пищеварение в мышечном желудке интенсивное, происходит за счет ферментов желудочного сока обоих желудков и сильных сокращений самого мышечного желудка. Мышечный желудок птиц осуществляет два вида сокращений: фазные и тонические. Они происходят одновременно. На фоне периодического повышения и понижения тонуса мышц происходит двухфазное сокращение желудка (сокращение, прекращение его, после небольшого расслабления вновь сокращение и расслабление).

Частота сокращений мышечного желудка 1…6 раз в 1 мин (давление в желудке при этом достигает 13,3…39,9 кПа); продолжительность одного сокращения 10…60 с. Цикл движения мышечного желудка начинается с сокращения верхней промежуточной мышцы. В период ее укорочения начинается сокращение передней главной.

В начале расслабления последней следуют последовательные сокращения нижней промежуточной и затем задней главной мышцы. При сокращении промежуточной мышцы содержимое краниального мешка выдавливается в щелевидную полость между пластинами кутикул главных мышц [76].

Последующие сокращения передней главной мышцы смещают содержимое щелевидной полости в заднем направлении. Сокращение нижней промежуточной мышцы обеспечивает вытеснение химуса каудального мешка в полость между главными мышцами. Задняя главная мышца продвигает содержимое в направлении краниального слепого мешка. Главные мышцы в каждом цикле сокращений производят встречные движения, оказывая растирающее воздействие на частицы корма.

Асимметричность расположения волокон в главных мышцах желудка обеспечивает возможность осуществления и боковых движений. Сократительная деятельность мышечного желудка регулируется местно ауэрбаховским сплетением и рефлекторно с участием блуждающих и чревных нервов [81].

При сокращении в мышечном желудке создается высокое давление. За счет сильных сокращений происходит механическое превращение корма – растирание его компонентов. Эта особенность пищеварительного аппарата птиц компенсирует отсутствие зубов. Растиранию способствуют находящиеся в желудке гравий, стекло и т. п., которые периодически заглатывают птицы в естественных условиях.

Одновременно в мышечном желудке происходит и химическое превращение корма за счет ферментов желудочного, поджелудочного, кишечного соков и желчи, которые забрасываются сюда че304 рез неплотно закрытый сфинктер. Сфинктер между мышечным желудком и двенадцатиперстной кишкой периодически открывается в период пищеварения. В мышечном желудке пищеварение очень интенсивное; в нем перевариваются белки, жиры и углеводы. Время желудочного пищеварения короткое (1…3 ч) [15].

Входное и выходное отверстия в мышечном желудке расположены близко. В связи с этим его сокращения сопровождаются эвакуацией жидкого желудочного содержимого, а твердые и более крупные частицы корма задерживаются в желудке и подвергаются более глубоким превращениям. Содержимое из желудка поступает в кишечник порциями и периодами. Пищеварение в кишечнике. В кишечнике осуществляется полостное и пристеночное пищеварение; преобладает пристеночное.

Пищеварение происходит с большой интенсивностью, так как все ферменты пищеварительных соков в кишечнике высокоактивны. Поджелудочная железа секретирует поджелудочный сок непрерывно. Прием корма и воды вызывает увеличение выделения поджелудочного сока и ферментов. При трехразовом кормлении и поении за сутки у кур выделяется (50+1,7) мл, уток – (56+1,2), у гусей – (64±4,9) мл поджелудочного сока [178].

Сок содержит высокоактивные ферменты. Активность амилазы у кур 25…30 тыс. единиц, уток – 20…25, у гусей – 40…45 тыс. единиц. Активность протеазы 622 единицы (1 мг казеина, гидролизованного 1 мл сока в течение 1 мин) у уток, 250 единиц – у гусей. Активность липазы у гусей 2,2, кур – 5, у уток – 5,5 единицы.

Механизм возбуждения и регуляции секреторной деятельности поджелудочной железы рефлекторно-гормональный. Желчь образуется непрерывно; у кур около 0,4мл/ч. После кормления образование желчи усиливается до 1,5мл/ч. Такой уровень выделения желчи сохраняется около 5 ч, а затем постепенно снижается. В течение суток у кур и уток на 1 кг массы образуется более 26 и 36 мл желчи соответственно [84].

Больше желчи в кишечник поступает по синусно-кишечному протоку. Механизм образования и выделения желчи рефлекторно-гормональный. Сильным возбудителем является соляная кислота. Исследования секреторной деятельности желез тощей кишки показали, что из изолированной петли длиной 20 см за 2 ч выделяется около 1,5 мл чистого сока, обладающего амилазной, малътаз- ной, сахаразной и пептидазной активностью.

Хорошо развитый кишечник и ворсинки обеспечивают интенсивное всасывание подвергнутых превращению веществ. Общая площадь всасывания у кур в среднем достигает 2000 см2. В кишечнике всасываются 62…63% сухих веществ, 86…91% протеина, 62…54% жира, 80% БЭВ, 30…50% воды. Время кишечного пищеварения 3…5 ч.

Кишечник осуществляет активную сократительную деятельность: число перистальтических движений за 15 мин составляет 6… 10 (2… 19). Антиперистальтических сокращений меньше – от 0 до 3. Эвакуация содержимого осуществляется периодами по 30…40 мин, затем покой около 30 мин. За 15 мин через анастомоз у кур проходит до 50 мл химуса: в кишечник поступает в дневное время более 400 мл, ночью – около 250 мл [70].

Количество сухого вещества в химусе колеблется в пределах 7,5…20%. В химусе кишечника активность амилазы высокая – около 10мг/мл в 1 мин, протеаз – более 5 мг/мл в 1 мин, липазы – 0,3 ммоль/мл в 1 мин. Содержимое порциями, по 30…56 порций в 1 ч, поступает в слепые отростки. Поступление химуса сопровождается расслаблением сфинктеров слепых отростков.

Превращение веществ содержимого в слепых отростках осуществляется за счет ферментов, поступающих с химусом, собственного секрета (содержит ферменты, действующие преимущественно на промежуточные продукты распада белков, жиров и углеводов, – карбоксипептидазу, липазу, альфа-амилазу, глюкозидазу, фруктофуронидазу) и за счет ферментов микроорганизмов, населяющих слепые отростки (большое количество микроорганизмов, в том числе целлюлозолитические бактерии, которые обеспечивают расщепление клетчатки).

Химус слепых мешков обладает амилазной активностью (более 5 мг/мл/мин) и протеазной активностью (более 0,5 мг/мл/мин). В слепых отростках расщепляется 10…25% клетчатки, 8… 10% протеина, небольшое количество растворимых углеводов и липидов. Пищеварение в слепых отростках сопровождается сокращениями – 10… 12 в 1 ч. У кур сокращения характера тонического напряжения продолжительностью до 80… 100 с [23,16].

Периодически сфинктеры раскрываются и содержимое порциями поступает в прямую кишку. На 8… 10 сокращений тонкого кишечника, обеспечивающих поступление содержимого в слепые отростки, сфинктеры осуществляют одно сокращение, обеспечивающее эвакуацию содержимого в прямую кишку.

Время пищеварения в толстом кишечнике 6… 10 ч. В прямой кишке завершается формирование каловых масс – помета (беловатые полутвердые массы, представляющие собой смешанный кал и мочевые экскреты). Пищеварительные процессы у птиц чрезвычайно эффективны. Сформировавшийся помет периодически выбрасывается наружу рефлекторно через клоаку [41].


У птиц осуществляются три фазы желудочной секреции: сложно-рефлекторная, гуморальная и кишечная.

Пищевой корм, пропитанный желудочным соком, попадает в мышечный желудок, где и происходит основной процесс желудочного пищеварения, сдавливание и механическое перетирание корма за счет ритмично сокращающихся гладких мышц (каждые 20—30 секунд) и мелких камешек, заглатываемых птицей. Мышечный желудок имеет твердую ороговевшую складчатую оболочку – кутикулу, которая постоянно стирается и наращивается изнутри за счет желез, расположенных под ней и образующих затвердевший мукополисахаридный секрет. Регуляция моторной деятельности осуществляется нервно-гуморальным путем. Стимулирует моторику блуждающий нерв. В мышечном отделе желудка расщепляются белки животного происхождения, углеводы, в меньшей степени растительные белки и жиры. В мышечный отдел желудка постоянно забрасывается содержимое из двенадцатиперстной кишки с примесью желчи, в этой слабокислой среде сохраняют активность ферменты корма, и развиваются бактерии, переваривающие крахмал и жировые вещества [41,45].

Из мышечного желудка содержимое отдельными порциями поступает в двенадцатиперстную кишку. Длина кишечника у птиц не большая, в 3—7 раз превышает длину их тела, поэтому корм проходит через желудочно-кишечный тракт быстро, в среднем за 24 часа.

По данным Т. А. Столляр (1988), главным источником важнейших пищеварительных ферментов является сок поджелудочной железы, который вместе с желчью изливается в просвет двенадцатиперстной кишки. В кишечнике происходит основное переваривание белков, жиров и углеводов. Расщепление крахмала и дисахаридов осуществляется посредством гидролиза, когда корм основательно смешивается с пищеварительными соками, а также с различными микроорганизмами.

У птиц основные процессы всасывания происходят в тонком отделе кишечника. Здесь всасываются продукты расщепления белков, жиров, углеводов, вода, минеральные вещества и витамины [57].

Для всасывания имеет значение уровень секреторной и моторной деятельности пищеварительного аппарата, а именно, перистальтические движения кишечника повышают давление в полости кишки и усиливают всасывание. Процессы всасывания регулируются рефлекторным и гуморальным путем (Рис.2).


Рисунок – 2 анатомическое строение желудка курицы


В кишечнике осуществляется полостное и пристеночное пищеварение. Хорошо развитый кишечник и ворсинки обеспечивают интенсивное всасывание подвергнутых превращению веществ: 62—63% сухих веществ, 86-91-протеина, 62-54- жира, БЭВ – 80, 30—50% воды [153].

Время кишечного пищеварения 3—5 час, после чего содержимое порциями поступает в слепые отростки. В них превращение осуществляется за счет ферментов, поступающих с химусом, собственного секрета (содержит ферменты, действующие преимущественно на промежуточные продукты распада белков, жиров и углеводов) и за счет ферментов микроорганизмов, населяющих слепые отростки (в том числе целлюлозолитические бактерии, которые обеспечивают расщепление клетчатки). Химус слепых мешков обладает амилазной и протеазной активностью. В слепых отростках расщепляется 10—25% клетчатки, 8—10% протеина, небольшое количество растворимых углеводов и липидов, осуществляется синтез витаминов группы В, всасывание воды и минеральных веществ [109].

Минеральный обмен у птиц меняется в зависимости от периода развития. В постэмбриональный период у цыплят увеличивается содержание минеральных элементов в тканях, повышается минерализация костей скелета, возрастает потребление макро- и микроэлементов на единицу прироста. Минеральные вещества особенно важны для молодняка птицы. Рост и образование мышечной ткани тесно связаны с формированием скелета, где происходит интенсивное отложение минеральных веществ. Недостаток тех или иных минеральных веществ вызывает нарушение их обмена в целом и ведет к уменьшению продуктивности (Рис.3)


Рисунок – 3 Классификация минеральных веществ


Железо – металл VIII группы периодической системы. Входит в состав всех клеток организма в виде гемопротеинов (цитохромы, гемоглобины, ми-оглобин, пероксидаза, катал аза), железосодержащих ферментов негеминовой группы, железа – рыхло связанного с белками и другими органическими соединениями, а также резервное железо в составе ферритина и гемосидерина. По данным Груна и Анке, содержание железа в теле и перьевом покрове цыплят резко возрастает в первые недели жизни, а затем закономерно снижается [56]. Примерно 64 – 66% общего количества железа в организме птиц содержится в крови, 20 – в мышцах, 5 – в печени, 5 – в скелете, 2 – в селезенке, 2 – 4 – в прочих органах. Потребность птицы в железе обычно удовлетворяется за счет натуральных кормов. Добавки к рациону усвояемых форм железа иногда производят для обогащения мяса бройлеров.

У птицы комплексные соединения микроэлемента под влиянием соляной кислоты и пепсина желудочного сока растворяются, трехвалентное железо, восстанавливаясь, переходит в двухвалентное. Образующиеся соли хорошо ионизируются и адсорбируются. Всасывание происходит в двенадцатиперстной кишке и зависит от насыщения железом ферритина слизистой кишечника и трансферрина крови. Адсорбции элемента способствуют регулирующие вещества корма или антиоксиданты: аскорбиновая кислота, токоферол, цистин, глютатион. Всасывание ингибируют органические кислоты, которые, соединяясь с железом, образуют не растворимые соли (оксалат, цитрат, фитат), а так же избыток в рационе фосфатов, госсипола, танина, цинка, марганца, меди, кадмия. На усвоение железа сильно влияет величина рН содержимого желудка [127,84].

Птица хорошо усваивает железо из сульфатов, хлорида, тартрата, фу-марата, глюконата, цитрата, хелатных комплексов. Плохо всасывается из карбонатов, пиро- и ортофосфатов, восстановленного железа и практически недоступным для всех видов животных остается в оксидах. Птица лучше усваивает железо из введенных в комбикорма хелатных соединений железа с молочной кислотой, глицином или метионином [44].

Darmowy fragment się skończył.

Ograniczenie wiekowe:
12+
Data wydania na Litres:
19 października 2022
Objętość:
156 str. 28 иллюстраций
ISBN:
9785005911476
Format pobierania:
Tekst PDF
Средний рейтинг 4,3 на основе 3 оценок
Tekst PDF
Средний рейтинг 0 на основе 0 оценок
Tekst, format audio dostępny
Средний рейтинг 4,7 на основе 391 оценок
Tekst, format audio dostępny
Средний рейтинг 4,6 на основе 624 оценок
Tekst
Средний рейтинг 4,8 на основе 783 оценок
Tekst, format audio dostępny
Средний рейтинг 4,2 на основе 5 оценок